
Math 333 Problem Set 9
Solutions

Be sure to list EVERYONE in the that you talk to about the homework!

1. (a) Show that the set {(a, 0) : a ∈ Z} is an ideal in Z× Z.

Proof. Set I = {(a, 0) : a ∈ Z}. Observe that 0Z×Z = (0, 0) ∈ I.
Let (a, 0), (b, 0) ∈ I and (c, d) ∈ Z× Z. We have (a, 0)− (b, 0) =
(a− b, 0) ∈ I and (a, 0)(c, d) = (ac, 0) ∈ I. Thus, I is an ideal in
Z× Z as desired.

(b) Show that the set {(a, a) : a ∈ Z} is not an ideal in Z× Z.
Set J = {(a, a) : a ∈ Z}. Then (1, 1) ∈ J and (1, 2) ∈ Z× Z, but
(1, 1)(1, 2) = (1, 2) 6∈ J . Thus, J is not an ideal in Z× Z.

2. Let R and S be rings and I ⊂ R, J ⊂ S ideals. Show that I × J is an
ideal in the ring R× S.

Proof. Since I and J are ideals, we have 0R ∈ I and 0S ∈ J so
(0R, 0S) ∈ I × J . Let (a, b), (c, d) ∈ I × J and (r, s) ∈ R × S.
We have (a, b) − (c, d) = (a − c, b − d) ∈ I × J because I and J
are ideals. Similarly, we have (r, s)(a, b) = (ra, sb) ∈ I × J and
(a, b)(r, s) = (ar, bs) ∈ I × J again because I and J are ideals. Thus,
I × J is an ideal.

3. Show that if I is an ideal in a field F , then I = 〈0F 〉 or I = F .

Proof. If I = 〈0R〉 we are done, so assume there exists a nonzero
element a ∈ I. Since I ⊂ F and F is a field, we have a is a unit, i.e.,
there exists b ∈ F so that ab = 1F . The fact that I is an ideal gives
1F = ab ∈ I. Given any r ∈ F we have r = r1F ∈ I and so I = F .

4. List all the distinct principal ideals in Z/2Z× Z/3Z.
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We have the principal ideals are given by 〈([a]2, [b]3)〉 for a = 0, 1 and
b = 0, 1, 2. The point is to see which of these is distinct. We have

〈([0]2, [0]3)〉 = {([0]2, [0]3)}
〈([0]2, [1]2)〉 = {([0]2, [0]3), ([0]2, [1]2), ([0]2, [2]2)}
〈([0]2, [2]2)〉 = {([0]2, [0]3), ([0]2, [1]2), ([0]2, [2]2)}
〈([1]2, [0]3)〉 = {([0]2, [0]3), ([1]2, [0]3)}
〈([1]2, [1]3)〉 = {([0]2, [0]3), ([0]2, [1]3), ([0]2, [2]3), ([1]2, [0]3), ([1]2, [1]3), ([1]2, [2]3)}
〈([1]2, [2]3)〉 = {([0]2, [0]3), ([0]2, [1]3), ([0]2, [2]3), ([1]2, [0]3), ([1]2, [1]3), ([1]2, [2]3)}.

Thus, the distinct ideals are given by 〈([0]2, [0]3)〉, 〈([0]2, [1]2)〉, 〈([1]2, [0]3)〉,
and 〈([1]2, [1]3)〉.

5. Let I be an ideal in R and S a subring of R. Prove that I ∩ S is an
ideal in S.

Proof. Since I and S are both subrings, we have 0R ∈ I ∩ S. Let
a, b ∈ I ∩ S. Since I and S are subrings we have a − b ∈ I and
a − b ∈ S, so a − b ∈ I ∩ S. Let s ∈ S. Since S is a subring and
a, s ∈ S, we have as, sa ∈ S. Since I is an ideal in R and S ⊂ R, we
have as, sa ∈ I. Thus, as, sa ∈ I∩S and so I∩S is a subring of S.

6. (a) Let I and J be ideals in a ring R. Define I + J = {i + j : i ∈
I, j ∈ J}. Show this is an ideal in R that contains I and J .

Proof. Note that since I and J are ideals, OR ∈ I ∩ J so 0R =
0R + 0R ∈ I + J . Let a, b ∈ I + J , i.e., a = i1 + j1 and b = i2 + j2
for some i1, i2 ∈ I, j1, j2 ∈ J . We have a − b = (i1 + j1) −
(i2 + j2) = (i1 − i2) + (j1 − j2) ∈ I + J . Let r ∈ R. Then
ra = r(i1 + j1) = ri1 + rj1 ∈ I + J since I and J are ideals.
Similarly, ar ∈ I + J . Thus, I + J is an ideal in R. Moreover,
given i ∈ I we have i = i + 0R ∈ I + J so I ⊂ I + J . Similarly,
J ⊂ I + J .

(b) Let a, b ∈ Z and set d = gcd(a, b). Show that 〈a〉+ 〈b〉 = 〈d〉.

Proof. Let r ∈ 〈a〉+ 〈b〉, i.e., r = ax+ by for some x, y ∈ Z. Since
d | a and d | b there exists s, t ∈ Z so that a = ds and b = dt.
Thus, r = ax + by = d(sx + ty) ∈ 〈d〉. Thus, 〈a〉+ 〈b〉 ⊂ 〈d〉.
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Let z ∈ 〈d〉, i.e., z = df for some f ∈ Z. Since d = gcd(a, b)
there exists m,n ∈ Z so that d = am + bn. Thus, z = df =
(am + bn)f = a(mf) + b(nf) ∈ 〈a〉+ 〈b〉. Thus, 〈d〉 ⊂ 〈a〉+ 〈b〉.
Combining this with the above containment gives equality.

7. Let F be a field. Show that every ideal in the ring F [x] is principal.

Proof. Let I ⊂ F [x] be an ideal. If I = 〈0F 〉 we are done, so assume
I 6= 〈0F 〉. Let S = {f ∈ I : deg f ≥ 0}. This set is nonempty since
I 6= 〈0F 〉. Choose g ∈ S of minimal degree. We claim that I = 〈g〉.
Clearly we have 〈g〉 ⊂ I since I is an ideal and g ∈ I. Let h ∈ I. Write
h = gq + r for q, r ∈ F [x] with r = 0F or deg r < deg g. Observe that
since h ∈ I and g ∈ I we have r = h−gq ∈ I. However, g has minimal
degree in I so it must be the case that r = 0F and so h ∈ 〈g〉, i.e.,
I = 〈g〉 as claimed. Thus, every ideal in F [x] is principal.

8. (a) Prove that the set S of rational numbers (in lowest terms) with
odd denominators is a subring of Q.

Proof. We have 0 = 0/1 ∈ S clearly. Let x, y ∈ S, so x = a
b and

y = c
d with b, d both odd. In particular, we know that bd is odd.

We have x − y = a
b −

c
d = ad−bc

bd . Moreover, xy = ac
bd ∈ S. Thus,

S is a subring of Q.

(b) Let I be the set of elements in S with even numerators. Prove
that I is an ideal in S.

Proof. We clearly have 0 = 0/1 ∈ I. Let x = a
b , y = c

d ∈ I
and z = e

f ∈ S be in lowest terms. We have x − y = a
b −

c
d =

ad−bc
bd . Observe since a and c are both even, so is ad− bc. Thus,

x− y ∈ I. Moreover, we have zx = e
f
a
b = ea

bf . Observe that x and
z both have odd denominators, so xz has an odd denominator.
Moreover, since x has an even numerator so does xz. Thus, xz ∈ I
and so I is an ideal of S.

(c) Show the set S/I consists of exactly two distinct cosets.
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Proof. Let x = a
b ∈ S. If a is even then x ∈ I so x + I = I.

Suppose that x = a
b with a odd, say a = 2k + 1. Then we have

x + I = 2k+1
b + I = 2k

b + 1
b + I = 1

b + I. Thus, a
b ≡

1
b (mod I)

if a is odd. Now observe that 1
b −

1
1 = 1−b

b . Since b is assumed
to be odd, we have 1 − b is even and so 1

b −
1
1 ∈ I, i.e., 1

b ≡ 1
(mod I). Thus, if x = a

b with a odd we have x+I = 1+I. Hence,
S/I = {0 + I, 1 + I}.


