Math 333 Problem Set 9 Solutions

Be sure to list EVERYONE in the that you talk to about the homework!

1. (a) Show that the set $\{(a, 0) : a \in \mathbb{Z}\}$ is an ideal in $\mathbb{Z} \times \mathbb{Z}$.

Proof. Set $I = \{(a, 0) : a \in \mathbb{Z}\}$. Observe that $0_{\mathbb{Z} \times \mathbb{Z}} = (0, 0) \in I$. Let $(a, 0), (b, 0) \in I$ and $(c, d) \in \mathbb{Z} \times \mathbb{Z}$. We have $(a, 0) - (b, 0) = (a - b, 0) \in I$ and $(a, 0)(c, d) = (ac, 0) \in I$. Thus, I is an ideal in $\mathbb{Z} \times \mathbb{Z}$ as desired.

- (b) Show that the set $\{(a, a) : a \in \mathbb{Z}\}$ is not an ideal in $\mathbb{Z} \times \mathbb{Z}$. Set $J = \{(a, a) : a \in \mathbb{Z}\}$. Then $(1, 1) \in J$ and $(1, 2) \in \mathbb{Z} \times \mathbb{Z}$, but $(1, 1)(1, 2) = (1, 2) \notin J$. Thus, J is not an ideal in $\mathbb{Z} \times \mathbb{Z}$.
- 2. Let R and S be rings and $I \subset R$, $J \subset S$ ideals. Show that $I \times J$ is an ideal in the ring $R \times S$.

Proof. Since I and J are ideals, we have $0_R \in I$ and $0_S \in J$ so $(0_R, 0_S) \in I \times J$. Let $(a, b), (c, d) \in I \times J$ and $(r, s) \in R \times S$. We have $(a, b) - (c, d) = (a - c, b - d) \in I \times J$ because I and J are ideals. Similarly, we have $(r, s)(a, b) = (ra, sb) \in I \times J$ and $(a, b)(r, s) = (ar, bs) \in I \times J$ again because I and J are ideals. Thus, $I \times J$ is an ideal.

3. Show that if I is an ideal in a field F, then $I = \langle 0_F \rangle$ or I = F.

Proof. If $I = \langle 0_R \rangle$ we are done, so assume there exists a nonzero element $a \in I$. Since $I \subset F$ and F is a field, we have a is a unit, i.e., there exists $b \in F$ so that $ab = 1_F$. The fact that I is an ideal gives $1_F = ab \in I$. Given any $r \in F$ we have $r = r1_F \in I$ and so I = F. \Box

4. List all the distinct principal ideals in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

We have the principal ideals are given by $\langle ([a]_2, [b]_3) \rangle$ for a = 0, 1 and b = 0, 1, 2. The point is to see which of these is distinct. We have

$$\begin{split} &\langle ([0]_2, [0]_3) \rangle = \{ ([0]_2, [0]_3) \} \\ &\langle ([0]_2, [1]_2) \rangle = \{ ([0]_2, [0]_3), ([0]_2, [1]_2), ([0]_2, [2]_2) \} \\ &\langle ([0]_2, [2]_2) \rangle = \{ ([0]_2, [0]_3), ([0]_2, [1]_2), ([0]_2, [2]_2) \} \\ &\langle ([1]_2, [0]_3) \rangle = \{ ([0]_2, [0]_3), ([1]_2, [0]_3) \} \\ &\langle ([1]_2, [1]_3) \rangle = \{ ([0]_2, [0]_3), ([0]_2, [1]_3), ([0]_2, [2]_3), ([1]_2, [0]_3), ([1]_2, [1]_3), ([1]_2, [2]_3) \} \\ &\langle ([1]_2, [2]_3) \rangle = \{ ([0]_2, [0]_3), ([0]_2, [1]_3), ([0]_2, [2]_3), ([1]_2, [0]_3), ([1]_2, [1]_3), ([1]_2, [2]_3) \} \\ &\langle ([1]_2, [2]_3) \rangle = \{ ([0]_2, [0]_3), ([0]_2, [1]_3), ([0]_2, [2]_3), ([1]_2, [0]_3), ([1]_2, [1]_3), ([1]_2, [2]_3) \} \end{split}$$

Thus, the distinct ideals are given by $\langle ([0]_2, [0]_3) \rangle$, $\langle ([0]_2, [1]_2) \rangle$, $\langle ([1]_2, [0]_3) \rangle$, and $\langle ([1]_2, [1]_3) \rangle$.

5. Let I be an ideal in R and S a subring of R. Prove that $I \cap S$ is an ideal in S.

Proof. Since I and S are both subrings, we have $0_R \in I \cap S$. Let $a, b \in I \cap S$. Since I and S are subrings we have $a - b \in I$ and $a - b \in S$, so $a - b \in I \cap S$. Let $s \in S$. Since S is a subring and $a, s \in S$, we have $as, sa \in S$. Since I is an ideal in R and $S \subset R$, we have $as, sa \in I$. Thus, $as, sa \in I \cap S$ and so $I \cap S$ is a subring of S. \Box

6. (a) Let I and J be ideals in a ring R. Define $I + J = \{i + j : i \in I, j \in J\}$. Show this is an ideal in R that contains I and J.

Proof. Note that since I and J are ideals, $O_R \in I \cap J$ so $0_R = 0_R + 0_R \in I + J$. Let $a, b \in I + J$, i.e., $a = i_1 + j_1$ and $b = i_2 + j_2$ for some $i_1, i_2 \in I$, $j_1, j_2 \in J$. We have $a - b = (i_1 + j_1) - (i_2 + j_2) = (i_1 - i_2) + (j_1 - j_2) \in I + J$. Let $r \in R$. Then $ra = r(i_1 + j_1) = ri_1 + rj_1 \in I + J$ since I and J are ideals. Similarly, $ar \in I + J$. Thus, I + J is an ideal in R. Moreover, given $i \in I$ we have $i = i + 0_R \in I + J$ so $I \subset I + J$. Similarly, $J \subset I + J$.

(b) Let $a, b \in \mathbb{Z}$ and set $d = \gcd(a, b)$. Show that $\langle a \rangle + \langle b \rangle = \langle d \rangle$.

Proof. Let $r \in \langle a \rangle + \langle b \rangle$, i.e., r = ax + by for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$ there exists $s, t \in \mathbb{Z}$ so that a = ds and b = dt. Thus, $r = ax + by = d(sx + ty) \in \langle d \rangle$. Thus, $\langle a \rangle + \langle b \rangle \subset \langle d \rangle$. Let $z \in \langle d \rangle$, i.e., z = df for some $f \in \mathbb{Z}$. Since $d = \gcd(a, b)$ there exists $m, n \in \mathbb{Z}$ so that d = am + bn. Thus, $z = df = (am + bn)f = a(mf) + b(nf) \in \langle a \rangle + \langle b \rangle$. Thus, $\langle d \rangle \subset \langle a \rangle + \langle b \rangle$. Combining this with the above containment gives equality. \Box

7. Let F be a field. Show that every ideal in the ring F[x] is principal.

Proof. Let $I \subset F[x]$ be an ideal. If $I = \langle 0_F \rangle$ we are done, so assume $I \neq \langle 0_F \rangle$. Let $S = \{f \in I : \deg f \geq 0\}$. This set is nonempty since $I \neq \langle 0_F \rangle$. Choose $g \in S$ of minimal degree. We claim that $I = \langle g \rangle$. Clearly we have $\langle g \rangle \subset I$ since I is an ideal and $g \in I$. Let $h \in I$. Write h = gq + r for $q, r \in F[x]$ with $r = 0_F$ or deg $r < \deg g$. Observe that since $h \in I$ and $g \in I$ we have $r = h - gq \in I$. However, g has minimal degree in I so it must be the case that $r = 0_F$ and so $h \in \langle g \rangle$, i.e., $I = \langle g \rangle$ as claimed. Thus, every ideal in F[x] is principal.

8. (a) Prove that the set S of rational numbers (in lowest terms) with odd denominators is a subring of \mathbb{Q} .

Proof. We have $0 = 0/1 \in S$ clearly. Let $x, y \in S$, so $x = \frac{a}{b}$ and $y = \frac{c}{d}$ with b, d both odd. In particular, we know that bd is odd. We have $x - y = \frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$. Moreover, $xy = \frac{ac}{bd} \in S$. Thus, S is a subring of \mathbb{Q} .

(b) Let I be the set of elements in S with even numerators. Prove that I is an ideal in S.

Proof. We clearly have $0 = 0/1 \in I$. Let $x = \frac{a}{b}, y = \frac{c}{d} \in I$ and $z = \frac{e}{f} \in S$ be in lowest terms. We have $x - y = \frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$. Observe since a and c are both even, so is ad - bc. Thus, $x - y \in I$. Moreover, we have $zx = \frac{e}{f}\frac{a}{b} = \frac{ea}{bf}$. Observe that x and z both have odd denominators, so xz has an odd denominator. Moreover, since x has an even numerator so does xz. Thus, $xz \in I$ and so I is an ideal of S.

(c) Show the set S/I consists of exactly two distinct cosets.

Proof. Let $x = \frac{a}{b} \in S$. If a is even then $x \in I$ so x + I = I. Suppose that $x = \frac{a}{b}$ with a odd, say a = 2k + 1. Then we have $x + I = \frac{2k+1}{b} + I = \frac{2k}{b} + \frac{1}{b} + I = \frac{1}{b} + I$. Thus, $\frac{a}{b} \equiv \frac{1}{b} \pmod{I}$ if a is odd. Now observe that $\frac{1}{b} - \frac{1}{1} = \frac{1-b}{b}$. Since b is assumed to be odd, we have 1 - b is even and so $\frac{1}{b} - \frac{1}{1} \in I$, i.e., $\frac{1}{b} \equiv 1 \pmod{I}$. Thus, if $x = \frac{a}{b}$ with a odd we have x + I = 1 + I. Hence, $S/I = \{0 + I, 1 + I\}$.