
Math 333 Problem Set 8
Solutions

Throughout this homework F denotes a field.

1. Let D : R[x]→ R[x] be the derivative map. Is D a homomorphism of
rings? An isomorphism? Be sure to justify your answer.

This map is not a homomorphism, so it cannot be an isomorphism.
For instance, we have D(1 · x) = D(x) = 1 but D(1)D(x) = 0 · 1 = 0.

2. Let a, b ∈ F with a 6= b. Prove that gcd(x− a, x− b) = 1F in F [x].

Proof. Let d = gcd(x−a, x−b) ∈ F [x]. Note that d is necessarily monic
and must be of degree 0 or 1 since it divides a polynomial of degree
1. If it is degree 0 we are done because the only monic polynomial of
degree 1 is 1F . Therefore, assume d has degree 1. Since d is monic,
we have d = x − c for some c ∈ F . Using the division algorithm we
see that x − a = (x − c) · 1 + (c − a). Thus, x − c | x − a if and only
if c = a. The same arguments shows x− c divides x− b if and only if
c = b. Since we are assuming a 6= b, this gives a contradiction. Thus,
the degree of d must be 0.

3. Modify the proof of the Euclidean algorithm we gave for Z to prove
there is a Euclidean algorithm for F [x]. Use your algorithm to find
the greatest common divisor of f = 4x4 + 2x3 + 6x2 + 4x+ 5 and g =
3x3 +5x2 +6x in (Z/7Z)[x]. Express gcd(f, g) as a linear combination
of f and g.

Proof. We first show that if f = gq + r, then gcd(f, g) = gcd(g, r).
Let d = gcd(f, g) and e = gcd(g, r). Since d | f and d | g we have d | r
because r = f − gq. Thus, d is a common divisor of g and r so d | e.
Conversely, we have e | g and e | r, so e | f as f = gq + r. Thus e is a
common divisor of f and g so it divides d. Since d and e divide each
other, we have d = ue for some nonzero u ∈ F . However, since d and
e are greatest common divisors they must be monic and so u = 1F .
Thus the claim is shown.
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Now consider the following sequence:

f = gq1 + r1 where r1 = 0F or deg r1 < deg g

g = r1q2 + r2 where r2 = 0F or deg r2 < deg g

...

rn−2 = rn−1qn + rn where rn = 0F or deg rn < deg rn−1

rn−1 = rnqn+1.

Observe that at each step one either gets a remainder of 0F or the de-
gree of the remainder strictly decreases. Since the collection of degrees
of the remainders is a strictly decreasing sequence of positive integers
it must eventually reach 1, in which case the next step must yield
a remainder of 0F . Now we apply the claim above to conclude that
gcd(f, g) = gcd(g, r1) = · · · = gcd(rn−1, rn) = gcd(rn, 0F ) = rn.

For these particular polynomials we have if we set f = 4x4 + 2x3 +
6x2 + 4x+ 5 and g = 3x3 + 5x2 + 6x, then:

f = 6xg + r1 where r1 = 5x2 + 4x+ 15

g = (2x+ 5)r1 + r2 where r2 = 4x+ 3

r1 = (3x+ 4)r2 + 0.

Thus, gcd(f, g) = r2 = 4x+ 3. Using back substitution we see

r2 = g − (2x+ 5)r1

= g + (5x+ 2)r1

= g + (5x+ 2)(f − 6xg)

= g + (5x+ 2)f − (30x+ 12)g

= (5x+ 2)f + (5x+ 3)g.

4. Prove that x2 + 1 is irreducible in Q[x].

Proof. Suppose that f = x2 + 1 is reducible in Q[x], i.e., there are
polynomials g, h ∈ Q[x] so that f = gh. Since we have deg(g) +
deg(h) = 2 and any polynomial of degree 0 is a unit, it must be the
case that g and h are linear. Write g = cx + d and h = sx + t for
some c, d, s, t ∈ Q. Observe that since deg(g) = deg(h) = 1 we must
have c and s are nonzero. Thus, x2 + 1 = csx2 + (ct+ ds)x+ dt, i.e.,
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cs = 1, ct + ds = 0, and dt = 1. Using that s 6= 0 we have c = 1/s.
Moreover, since dt = 1 we have d and t are nonzero so we have d = 1/t.
Substituting this we obtain 0 = ct+ds = (1/s)t+(1/t)s, i.e., t2 = −s2.
However, this is a contradiction as t2 > 0 and −s2 < 0. Thus, x2 + 1
is irreducible in Q[x].

5. List all associates of x2 + x+ 1 in (Z/5Z)[x].

The units of (Z/5Z)[x] are 1, 2, 3, 4 so the associates of x2 + x+ 1 are
x2 + x+ 1, 2(x2 + x+ 1), 3(x2 + x+ 1), and 4(x2 + x+ 1).

6. Prove that f ∈ F [x] is irreducible if and only if for every g ∈ F [x],
either f | g or gcd(f, g) = 1F .

Proof. First suppose that f is irreducible and let g ∈ F [x]. Let d =
gcd(f, g). Since f is irreducible the only divisors of f are units and
associates. If d is a unit then it is 1F since the only units in F [x] are
the nonzero elements of F and the only monic element of F is 1F . If d
is not a unit, then d is an associate of f , i.e., d = uf for some nonzero
u ∈ F . However, this gives f | g.

Now assume that for every g ∈ F [x] we have either f | g or gcd(f, g) =
1F . Suppose that f = gh for some g, h ∈ F [x]. We have either
f | g, which would give f | g and g | f so f = gc for some nonzero
c ∈ F . Thus, h is a unit and g is an associate of f . If f - g, then
gcd(f, g) = 1F so there exists s, t ∈ F [x] so that fs + gt = 1F . This
gives 1F = ghs+ gt = g(hs+ t), i.e., g is a unit. Thus, in either case
we see f can only be factored into a product of a unit and an associate
so f is irreducible.

7. Find a nonzero polynomial in (Z/3Z)[x] that induces the zero function
on Z/3Z.

Define f = x(x− 1)(x− 2). The leading coefficient of this is 1 so it is
a nonzero polynomial. However, when we view this as a polynomial
function it vanishes on each element of Z/3Z.
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8. Use the factor theorem to show that x7 − x factors in (Z/7Z)[x] as
x(x−1)(x−2)(x−3)(x−4)(x−5)(x−6) without doing any polynomial
multiplication.

Proof. Observe that by direct computation one sees that each element
of Z/7Z is a root of f = x7−x. This shows that x−j divides f for each
j ∈ Z/7Z. We now apply problem 2 to deduce that gcd(x−a, x−b) = 1
for each a, b ∈ Z/7Z with a 6= b. It only remains to show that if
g, h ∈ F [x] with gcd(g, h) = 1F and g | k and h | k for some k ∈ F [x],
then gh | k. Since g | k, there exists s ∈ F [x] so that k = gs. Since
h | k, we have h | gs. However, gcd(g, h) = 1F so we must have h | s.
This gives the result.

9. For what values of k is x − 2 a factor of x4 − 5x3 + 5x2 + 3x + k in
Q[x].

We have that x−2 is a factor of f = x4−5x3+5x2+3x+k if and only
if 2 is a root of the polynomial function induced on Q by f . Observe
that f(2) = 2 + k. Thus, we require k = −2.

10. If f and g are associates in F [x], show they have the same roots in F .
If f and g have the same roots in F , are they necessarily associates?
Be sure to justify your answer.

Let f and g be associates in F [x], i.e., there exists a nonzero u ∈ F
so that f = ug. Let α be a root of f , i.e., f(α) = 0F where f(α)
denotes the value of the polynomial function at α. Since f = ug
as polynomials, this gives f = ug as polynomial functions. Thus,
u(α)g(α) = ug(α) = f(α) = 0F where we have used u ∈ F so u(α) =
u 6= 0F . Thus, g(α) = 0 so α is a root of g. Conversely, if β is a root
of g then f(β) = ug(β) = 0F , so β is a root of f . Hence, if f and g
are associate they have the same roots.

Let f = x and g = x2. These polynomials have the same roots, namely
0F , but they are not associate as g = xf and since deg(x) = 1, x is
not a unit.


