Math 333 Problem Set 8 Solutions

Throughout this homework F denotes a field.

1. Let $D : \mathbb{R}[x] \to \mathbb{R}[x]$ be the derivative map. Is D a homomorphism of rings? An isomorphism? Be sure to justify your answer.

This map is not a homomorphism, so it cannot be an isomorphism. For instance, we have $D(1 \cdot x) = D(x) = 1$ but $D(1)D(x) = 0 \cdot 1 = 0$.

2. Let $a, b \in F$ with $a \neq b$. Prove that $gcd(x - a, x - b) = 1_F$ in F[x].

Proof. Let $d = \gcd(x-a, x-b) \in F[x]$. Note that d is necessarily monic and must be of degree 0 or 1 since it divides a polynomial of degree 1. If it is degree 0 we are done because the only monic polynomial of degree 1 is 1_F . Therefore, assume d has degree 1. Since d is monic, we have d = x - c for some $c \in F$. Using the division algorithm we see that $x - a = (x - c) \cdot 1 + (c - a)$. Thus, $x - c \mid x - a$ if and only if c = a. The same arguments shows x - c divides x - b if and only if c = b. Since we are assuming $a \neq b$, this gives a contradiction. Thus, the degree of d must be 0.

3. Modify the proof of the Euclidean algorithm we gave for \mathbb{Z} to prove there is a Euclidean algorithm for F[x]. Use your algorithm to find the greatest common divisor of $f = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $g = 3x^3 + 5x^2 + 6x$ in $(\mathbb{Z}/7\mathbb{Z})[x]$. Express gcd(f,g) as a linear combination of f and g.

Proof. We first show that if f = gq + r, then gcd(f,g) = gcd(g,r). Let d = gcd(f,g) and e = gcd(g,r). Since $d \mid f$ and $d \mid g$ we have $d \mid r$ because r = f - gq. Thus, d is a common divisor of g and r so $d \mid e$. Conversely, we have $e \mid g$ and $e \mid r$, so $e \mid f$ as f = gq + r. Thus e is a common divisor of f and g so it divides d. Since d and e divide each other, we have d = ue for some nonzero $u \in F$. However, since d and e are greatest common divisors they must be monic and so $u = 1_F$. Thus the claim is shown. Now consider the following sequence:

$$f = gq_1 + r_1 \quad \text{where } r_1 = 0_F \text{ or } \deg r_1 < \deg g$$
$$g = r_1q_2 + r_2 \quad \text{where } r_2 = 0_F \text{ or } \deg r_2 < \deg g$$
$$\vdots$$
$$r_{n-2} = r_{n-1}q_n + r_n \quad \text{where } r_n = 0_F \text{ or } \deg r_n < \deg r_{n-1}$$
$$r_{n-1} = r_nq_{n+1}.$$

Observe that at each step one either gets a remainder of 0_F or the degree of the remainder strictly decreases. Since the collection of degrees of the remainders is a strictly decreasing sequence of positive integers it must eventually reach 1, in which case the next step must yield a remainder of 0_F . Now we apply the claim above to conclude that $gcd(f,g) = gcd(g,r_1) = \cdots = gcd(r_{n-1},r_n) = gcd(r_n,0_F) = r_n$.

For these particular polynomials we have if we set $f = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $g = 3x^3 + 5x^2 + 6x$, then:

$$f = 6xg + r_1 \text{ where } r_1 = 5x^2 + 4x + 15$$

$$g = (2x + 5)r_1 + r_2 \text{ where } r_2 = 4x + 3$$

$$r_1 = (3x + 4)r_2 + 0.$$

Thus, $gcd(f,g) = r_2 = 4x + 3$. Using back substitution we see

$$r_{2} = g - (2x + 5)r_{1}$$

= $g + (5x + 2)r_{1}$
= $g + (5x + 2)(f - 6xg)$
= $g + (5x + 2)f - (30x + 12)g$
= $(5x + 2)f + (5x + 3)g$.

4. Prove that $x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.

Proof. Suppose that $f = x^2 + 1$ is reducible in $\mathbb{Q}[x]$, i.e., there are polynomials $g, h \in \mathbb{Q}[x]$ so that f = gh. Since we have $\deg(g) + \deg(h) = 2$ and any polynomial of degree 0 is a unit, it must be the case that g and h are linear. Write g = cx + d and h = sx + t for some $c, d, s, t \in \mathbb{Q}$. Observe that since $\deg(g) = \deg(h) = 1$ we must have c and s are nonzero. Thus, $x^2 + 1 = csx^2 + (ct + ds)x + dt$, i.e.,

cs = 1, ct + ds = 0, and dt = 1. Using that $s \neq 0$ we have c = 1/s. Moreover, since dt = 1 we have d and t are nonzero so we have d = 1/t. Substituting this we obtain 0 = ct + ds = (1/s)t + (1/t)s, i.e., $t^2 = -s^2$. However, this is a contradiction as $t^2 > 0$ and $-s^2 < 0$. Thus, $x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.

5. List all associates of $x^2 + x + 1$ in $(\mathbb{Z}/5\mathbb{Z})[x]$.

The units of $(\mathbb{Z}/5\mathbb{Z})[x]$ are 1, 2, 3, 4 so the associates of $x^2 + x + 1$ are $x^2 + x + 1$, $2(x^2 + x + 1)$, $3(x^2 + x + 1)$, and $4(x^2 + x + 1)$.

6. Prove that $f \in F[x]$ is irreducible if and only if for every $g \in F[x]$, either $f \mid g$ or $gcd(f,g) = 1_F$.

Proof. First suppose that f is irreducible and let $g \in F[x]$. Let $d = \gcd(f, g)$. Since f is irreducible the only divisors of f are units and associates. If d is a unit then it is 1_F since the only units in F[x] are the nonzero elements of F and the only monic element of F is 1_F . If d is not a unit, then d is an associate of f, i.e., d = uf for some nonzero $u \in F$. However, this gives $f \mid g$.

Now assume that for every $g \in F[x]$ we have either $f \mid g$ or $gcd(f,g) = 1_F$. Suppose that f = gh for some $g, h \in F[x]$. We have either $f \mid g$, which would give $f \mid g$ and $g \mid f$ so f = gc for some nonzero $c \in F$. Thus, h is a unit and g is an associate of f. If $f \nmid g$, then $gcd(f,g) = 1_F$ so there exists $s, t \in F[x]$ so that $fs + gt = 1_F$. This gives $1_F = ghs + gt = g(hs + t)$, i.e., g is a unit. Thus, in either case we see f can only be factored into a product of a unit and an associate so f is irreducible.

7. Find a nonzero polynomial in $(\mathbb{Z}/3\mathbb{Z})[x]$ that induces the zero function on $\mathbb{Z}/3\mathbb{Z}$.

Define f = x(x-1)(x-2). The leading coefficient of this is 1 so it is a nonzero polynomial. However, when we view this as a polynomial function it vanishes on each element of $\mathbb{Z}/3\mathbb{Z}$. 8. Use the factor theorem to show that $x^7 - x$ factors in $(\mathbb{Z}/7\mathbb{Z})[x]$ as x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6) without doing any polynomial multiplication.

Proof. Observe that by direct computation one sees that each element of $\mathbb{Z}/7\mathbb{Z}$ is a root of $f = x^7 - x$. This shows that x - j divides f for each $j \in \mathbb{Z}/7\mathbb{Z}$. We now apply problem 2 to deduce that gcd(x-a, x-b) = 1 for each $a, b \in \mathbb{Z}/7\mathbb{Z}$ with $a \neq b$. It only remains to show that if $g, h \in F[x]$ with $gcd(g, h) = 1_F$ and $g \mid k$ and $h \mid k$ for some $k \in F[x]$, then $gh \mid k$. Since $g \mid k$, there exists $s \in F[x]$ so that k = gs. Since $h \mid k$, we have $h \mid gs$. However, $gcd(g, h) = 1_F$ so we must have $h \mid s$. This gives the result.

9. For what values of k is x - 2 a factor of $x^4 - 5x^3 + 5x^2 + 3x + k$ in $\mathbb{Q}[x]$.

We have that x-2 is a factor of $f = x^4 - 5x^3 + 5x^2 + 3x + k$ if and only if 2 is a root of the polynomial function induced on \mathbb{Q} by f. Observe that f(2) = 2 + k. Thus, we require k = -2.

10. If f and g are associates in F[x], show they have the same roots in F. If f and g have the same roots in F, are they necessarily associates? Be sure to justify your answer.

Let f and g be associates in F[x], i.e., there exists a nonzero $u \in F$ so that f = ug. Let α be a root of f, i.e., $f(\alpha) = 0_F$ where $f(\alpha)$ denotes the value of the polynomial function at α . Since f = ugas polynomials, this gives f = ug as polynomial functions. Thus, $u(\alpha)g(\alpha) = ug(\alpha) = f(\alpha) = 0_F$ where we have used $u \in F$ so $u(\alpha) =$ $u \neq 0_F$. Thus, $g(\alpha) = 0$ so α is a root of g. Conversely, if β is a root of g then $f(\beta) = ug(\beta) = 0_F$, so β is a root of f. Hence, if f and gare associate they have the same roots.

Let f = x and $g = x^2$. These polynomials have the same roots, namely 0_F , but they are not associate as g = xf and since $\deg(x) = 1$, x is not a unit.