Math 333 Problem Set 6
Due: 03/28/16

Be sure to list EVERYONE in the that you talk to about the homework!

1. Let R be a ring with identity 1z. Set S = {nlgr : n € Z} where we
recall nlg = 1g + - - - + 1 with n-copies of 1 on the right hand side.
Show that S is a subring of R.

Proof. The first thing one needs to do here is define what we mean by
nlg for those integers not in Z>1 since in those cases the definition
given in the problem is not sufficient. If n € Z.g we set nlp =
(=1g) + (—=1gr) + -+ - (—1g) where there are —n copies of —1. We
define 01 = Or. We clearly have that S is nonempty and contains Og
by definition of 01p.

Closed under addition: Let m,n € Z. If m and n are positive then
mlp+nlg = (m+n)lg € S. fm > 0and n = 0 we have m1z+01p =
mlrp +0r = mlrp € S. Suppose m > 0 and n < 0. Then we have
mlp+nlp=Og+---1r)+ ((-1g)+ -+ (=1g) = (m+n)lg € S.
Similarly, if m and n are both negative we have mlg +nlgp = (m +
n)lr € S. Finally, if m < 0 and n = 0 we have mlzp+nly = mlgr € S.

Closed under multiplication: Let m,n € Z. If either m or n is 0 we
immediately have (mlg)(nlg) = 0g = 0l € S. Assume m and n are
both positive. Then we have (mlg)(nlg) = (Z;nzl 13) (> 1) =
mnlp. Similarly, one obtains the same result in the cases m and n are
both negative or one is positive and one is negative.

Closed under additive inverse: Let mlg € S. Observe we have mlg +
(=m)lg = (m —m)lg = 01z = Og, thus the additive inverse of mlp
is (—m)1pR, which is in S.

Thus, S is a subring of R. L

2. Let R and S be rings. Let T'= {(r,0g) : r € R} be a subset of R x S.
Prove that T is a subring of R x S.

Proof. Observe that since R is a ring we have Og € R and so (0, 0g) €
T. Moreover, (Ogr,0s) = 07 so T' is nonempty and contains the identity
element. Let (r1,0g), (r2,05) € T.



Closed under addition:

Closed under multiplication:

Closed under additive inverses:

We have (r1,0s) + (r2,05) = (r1 + r2,05) € T, so T is closed
under addition.

We have (r1,02)(r2,05) = (r172,02) € T, so T is closed under
multiplication.

We have an additive inverse —r; € R because R is a ring. Thus,
(—r1,0g) € T is the additive inverse of (r1,0g).

Thus, we see T' is a subring of R x S. []

3. Let S and T be subrings of a ring R. In (a) and (b), if the answer is

43

(a)

yes,

’ prove it. If the answer is “no,” give a counterexample.

Is SNT a subring of R?

Proof. Note that since S and T are subrings, we have Op is in
each, so is in their intersection. Let a,b € SNT. Since S is a ring
we have a+b and ab are both in S and similarly a4+ b and ab are
in T. Thus, SNT is closed under addition and multiplication.
Since S is a subring we have an additive inverse = of ¢ in S and
since T is a subring there is an additive inverse of a in T". Since
additive inverses are unique, the additive inverse of ¢ is in SNT'.
Thus, SN T is a subring of R. 0J

Is SUT a subring of R?

Consider the subrings 6Z and 87Z of Z. Note that 6 € 6Z and
8 € 8Z but 6 + 8 = 14 is not in 6Z or 8Z, so it is not in their
union. Thus, the union of 6Z and 8Z is not closed under addition
and so not a subring.

If ab is a zero divisor in a commutative ring R, prove that a or
b is a zero divisor.

Proof. Let ab be a zero divisor, i.e., there exists a nonzero ele-
ment ¢ € R so that abc = 0. If bc = Or we are done as that
means b is a zero divisor (b # Og because if b = Og, then ab = 0p
which is a contradiction since ab is a zero divisor.) If be # Op,
then a is a zero divisor. Thus, a or b is a zero divisor. []



(b) If a or b is a zero divisor in a commutative ring R and ab # Og,
prove that ab is a zero divisor.

Proof. Let a or b be a zero divisor and assume ab # Op. If
a is a zero divisor, then there exists a nonzero ¢ € R so that
ac = 0r = ca. Thus, c¢(ab) = (ca)b = Or so ab is a zero divisor.
Similarly, if b is a zero divisor, then there exists a nonzero d € R
so that bd = Og = db. Thus, (ab)d = a(bd) = Og. Thus, ab is a
zero divisor. O

5. Assume that R = {Og, 1g,a,b} is a ring and a and b are units. Write
out the multiplication table for R.

The main issue here is to determine a2, b> and ab. Since a is a unit we
must have a® = 1 or ab = 1. Suppose that a®> = 1. Since inverses
are unique we cannot have ab = 1r; we cannot have ab = O because
a unit cannot be a zero divisor, and if ab = a then multiplying both
sides by a gives b = 1g, a contradiction. Thus, if > = 1z we must
have ab = b. However, this is a contradiction since b is a unit so we
obtain (@ — 1g)b = Ogr and so a = 1 or b = Og, both of which are
contradictions. Thus, we cannot have a> = 1z. The same argument
shows b? cannot be 1p. Thus, it must be the case that ab = 1x = ba.
Thus, we must have a> = b and b?> = a. This allows one to fill in the
multiplication table.

6. An element a of a ring R is nilpotent if a” = Or for some positive
integer n. Prove that R has no nonzero nilpotent elements if and only
if 0g is the only solution of the equation 22 = 0p.

Proof. First, suppose that R has no nonzero nilpotent elements. If
a is a solution to 22 = Op, then a = Op for otherwise a would be a
nonzero nilpotent element. Now suppose Op is the only solution to
the equation 22 = 0. Suppose a € R is a nonzero nilpotent element,
i.e., a” = Op for some positive integer n and assume n is the smallest
such positive integer. If n is even, say n = 2k for some k € Z, then
Or = a?* = (a¥)2. This contradicts our assumption that Og is only
solution to the equation z? = Og as a* # Og by our assumption n is
minimal positive integer so that a™ = 0r. If n is odd, say n = 2k + 1

a



for some k € Z. Then we have a?**1 = 0. Multiplying both sides by
a gives a?* = Or and we are in the case we just handled. Thus, we
cannot have a nonzero nilpotent element as claimed. []

. Let R be a ring with identity. If there is a smallest integer n so that
nlgr = Og, then R is said to have characteristic n. If no such n exists,
R is said to have characteristic zero.

(a) Show that Z has characteristic zero and Z/nZ has characteristic
n.

It is clear that Z has characteristic zero because m1 # 0 for all
integers m > 0.

We clearly have n[l],, = [n], = [0],. However, to see that the
characteristic of Z/nZ is n we have to show there is no smaller
positive integer m so that m[1], = [0],. If m[1],, = [0],, then

[m],, = [0]y, i.e., n | m. This can only happen if m = 0 or m > n.
Thus, n is the characteristic of Z/nZ.

(b) What is the characteristic of Z/47 x 7 /677

Set R = Z/AZ x Z/6Z. 1t is easy to 121p = Og. Suppose that
mlp = Op for some positive integer m. Then we must have
m[1]4 = [0]4 and m[l]g = [0]¢. This means that 4 | m and 6 | m,
i.e., the least common multiple of 4 and 6 must divide m. This
gives 12 | m as desired.

a O

(a) Show that R = { [0 b

} € Matg(R)} is a subring of Maty(R).

0 0

Proof. We have Oypat, () = [0 0

} € R. This gives R is nonempty

0 b|’|0 d

a 0| |c O] |at+c O a 0| |c 0] _
have [o b}r[o d}_[ 0 b+d]€Rand [o b] [0 d}_

and contains the additive identity. Let {a O} , {C 0] € R. We



{ac 0

0 b d} € R. Thus, R is closed under addition and multi-

plication. Finally, the additive inverse of [g (lj in Maty(R)

is {—Oa Ob], which is clearly in R. Thus, R is a subring of

Matg (R) ]
Show that R is isomorphic to R x R.

Proof. Define ¢ : R - R x R by go([g 2}) = (a,b). One can

show this is bijective by checking injective and surjective, but in

this case it is easy to define an inverse function ¢ : R x R — R
by ¥(a,b) = [8 2] It is clear that o o) is the identity map
on R x R and ¢ o ¢ is the identity on R. Thus, we have ¢ is
bijective.

Let [a 0] , [C O} € R. We have

0 b|7(0 d

(o 3] lo ) =" )
=(a+cb+d)
= (a,b) + (c,d)

= (o 3) - (5 3)
(o sl )=+ (5 u)

= (ac, bd)
= (a,b)(c,d)

-o(§ 2+ 3)

Thus, ¢ is an isomorphism between R and R x R. O
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