Math 333 Problem Set 6 Due: 03/28/16

Be sure to list EVERYONE in the that you talk to about the homework!

1. Let R be a ring with identity 1_R . Set $S = \{n1_R : n \in \mathbb{Z}\}$ where we recall $n1_R = 1_R + \cdots + 1_R$ with n-copies of 1_R on the right hand side. Show that S is a subring of R.

Proof. The first thing one needs to do here is define what we mean by $n1_R$ for those integers not in $\mathbb{Z}_{\geq 1}$ since in those cases the definition given in the problem is not sufficient. If $n \in \mathbb{Z}_{<0}$ we set $n1_R = (-1_R) + (-1_R) + \cdots + (-1_R)$ where there are -n copies of -1_R . We define $01_R = 0_R$. We clearly have that S is nonempty and contains 0_R by definition of 01_R .

- Closed under addition: Let $m, n \in \mathbb{Z}$. If m and n are positive then $m1_R+n1_R = (m+n)1_R \in S$. If m > 0 and n = 0 we have $m1_R+01_R = m1_R + 0_R = m1_R \in S$. Suppose m > 0 and n < 0. Then we have $m1_R + n1_R = (1_R + \cdots + 1_R) + ((-1_R) + \cdots + (-1_R) = (m+n)1_R \in S$. Similarly, if m and n are both negative we have $m1_R + n1_R = (m+n)1_R \in S$. Finally, if m < 0 and n = 0 we have $m1_R+n1_R = m1_R \in S$.
- Closed under multiplication: Let $m, n \in \mathbb{Z}$. If either m or n is 0 we immediately have $(m1_R)(n1_R) = 0_R = 01_R \in S$. Assume m and n are both positive. Then we have $(m1_R)(n1_R) = \left(\sum_{j=1}^m 1_R\right) \left(\sum_{i=1}^n 1_R\right) = mn1_R$. Similarly, one obtains the same result in the cases m and n are both negative or one is positive and one is negative.
- Closed under additive inverse: Let $m1_R \in S$. Observe we have $m1_R + (-m)1_R = (m-m)1_R = 01_R = 0_R$, thus the additive inverse of $m1_R$ is $(-m)1_R$, which is in S.

Thus, S is a subring of R.

- 2. Let R and S be rings. Let $T = \{(r, 0_S) : r \in R\}$ be a subset of $R \times S$. Prove that T is a subring of $R \times S$.

Proof. Observe that since R is a ring we have $0_R \in R$ and so $(0_R, 0_S) \in T$. Moreover, $(0_R, 0_S) = 0_T$ so T is nonempty and contains the identity element. Let $(r_1, 0_S), (r_2, 0_S) \in T$.

Closed under addition: We have $(r_1, 0_S) + (r_2, 0_S) = (r_1 + r_2, 0_S) \in T$, so T is closed under addition.

Closed under multiplication: We have $(r_1, 0_2)(r_2, 0_S) = (r_1r_2, 0_2) \in T$, so T is closed under multiplication.

Closed under additive inverses: We have an additive inverse $-r_1 \in R$ because R is a ring. Thus, $(-r_1, 0_S) \in T$ is the additive inverse of $(r_1, 0_S)$.

Thus, we see T is a subring of $R \times S$.

- 3. Let S and T be subrings of a ring R. In (a) and (b), if the answer is "yes," prove it. If the answer is "no," give a counterexample.
 - (a) Is $S \cap T$ a subring of R?

Proof. Note that since S and T are subrings, we have 0_R is in each, so is in their intersection. Let $a, b \in S \cap T$. Since S is a ring we have a + b and ab are both in S and similarly a + b and ab are in T. Thus, $S \cap T$ is closed under addition and multiplication. Since S is a subring we have an additive inverse x of a in S and since T is a subring there is an additive inverse of a in T. Since additive inverses are unique, the additive inverse of a is in $S \cap T$. Thus, $S \cap T$ is a subring of R.

(b) Is $S \cup T$ a subring of R?

Consider the subrings $6\mathbb{Z}$ and $8\mathbb{Z}$ of \mathbb{Z} . Note that $6 \in 6\mathbb{Z}$ and $8 \in 8\mathbb{Z}$ but 6 + 8 = 14 is not in $6\mathbb{Z}$ or $8\mathbb{Z}$, so it is not in their union. Thus, the union of $6\mathbb{Z}$ and $8\mathbb{Z}$ is not closed under addition and so not a subring.

 (a) If ab is a zero divisor in a commutative ring R, prove that a or b is a zero divisor.

Proof. Let ab be a zero divisor, i.e., there exists a nonzero element $c \in R$ so that $abc = 0_R$. If $bc = 0_R$ we are done as that means b is a zero divisor ($b \neq 0_R$ because if $b = 0_R$, then $ab = 0_R$ which is a contradiction since ab is a zero divisor.) If $bc \neq 0_R$, then a is a zero divisor. Thus, a or b is a zero divisor. \Box

(b) If a or b is a zero divisor in a commutative ring R and $ab \neq 0_R$, prove that ab is a zero divisor.

Proof. Let a or b be a zero divisor and assume $ab \neq 0_R$. If a is a zero divisor, then there exists a nonzero $c \in R$ so that $ac = 0_R = ca$. Thus, $c(ab) = (ca)b = 0_R$ so ab is a zero divisor. Similarly, if b is a zero divisor, then there exists a nonzero $d \in R$ so that $bd = 0_R = db$. Thus, $(ab)d = a(bd) = 0_R$. Thus, ab is a zero divisor.

5. Assume that $R = \{0_R, 1_R, a, b\}$ is a ring and a and b are units. Write out the multiplication table for R.

The main issue here is to determine a^2 , b^2 and ab. Since a is a unit we must have $a^2 = 1_R$ or $ab = 1_R$. Suppose that $a^2 = 1_R$. Since inverses are unique we cannot have $ab = 1_R$; we cannot have $ab = 0_R$ because a unit cannot be a zero divisor, and if ab = a then multiplying both sides by a gives $b = 1_R$, a contradiction. Thus, if $a^2 = 1_R$ we must have ab = b. However, this is a contradiction since b is a unit so we obtain $(a - 1_R)b = 0_R$ and so $a = 1_R$ or $b = 0_R$, both of which are contradictions. Thus, we cannot have $a^2 = 1_R$. The same argument shows b^2 cannot be 1_R . Thus, it must be the case that $ab = 1_R = ba$. Thus, we must have $a^2 = b$ and $b^2 = a$. This allows one to fill in the multiplication table.

6. An element a of a ring R is *nilpotent* if $a^n = 0_R$ for some positive integer n. Prove that R has no nonzero nilpotent elements if and only if 0_R is the only solution of the equation $x^2 = 0_R$.

Proof. First, suppose that R has no nonzero nilpotent elements. If a is a solution to $x^2 = 0_R$, then $a = 0_R$ for otherwise a would be a nonzero nilpotent element. Now suppose 0_R is the only solution to the equation $x^2 = 0_R$. Suppose $a \in R$ is a nonzero nilpotent element, i.e., $a^n = 0_R$ for some positive integer n and assume n is the smallest such positive integer. If n is even, say n = 2k for some $k \in \mathbb{Z}$, then $0_R = a^{2k} = (a^k)^2$. This contradicts our assumption that 0_R is only solution to the equation $x^2 = 0_R$ as $a^k \neq 0_R$ by our assumption n is minimal positive integer so that $a^n = 0_R$. If n is odd, say n = 2k + 1

for some $k \in \mathbb{Z}$. Then we have $a^{2k+1} = 0_R$. Multiplying both sides by a gives $a^{2k} = 0_R$ and we are in the case we just handled. Thus, we cannot have a nonzero nilpotent element as claimed.

- 7. Let R be a ring with identity. If there is a smallest integer n so that $n1_R = 0_R$, then R is said to have characteristic n. If no such n exists, R is said to have characteristic zero.
 - (a) Show that Z has characteristic zero and Z/nZ has characteristic n.

It is clear that \mathbb{Z} has characteristic zero because $m1 \neq 0$ for all integers m > 0.

We clearly have $n[1]_n = [n]_n = [0]_n$. However, to see that the characteristic of $\mathbb{Z}/n\mathbb{Z}$ is n we have to show there is no smaller positive integer m so that $m[1]_n = [0]_n$. If $m[1]_n = [0]_n$, then $[m]_n = [0]_n$, i.e., $n \mid m$. This can only happen if m = 0 or $m \ge n$. Thus, n is the characteristic of $\mathbb{Z}/n\mathbb{Z}$.

(b) What is the characteristic of $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$?

Set $R = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$. It is easy to $121_R = 0_R$. Suppose that $m1_R = 0_R$ for some positive integer m. Then we must have $m[1]_4 = [0]_4$ and $m[1]_6 = [0]_6$. This means that $4 \mid m$ and $6 \mid m$, i.e., the least common multiple of 4 and 6 must divide m. This gives $12 \mid m$ as desired.

8. (a) Show that $R = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in \operatorname{Mat}_2(\mathbb{R}) \right\}$ is a subring of $\operatorname{Mat}_2(\mathbb{R})$.

Proof. We have $0_{\operatorname{Mat}_2(\mathbb{R})} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in R$. This gives R is nonempty and contains the additive identity. Let $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in R$. We have $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} a+c & 0 \\ 0 & b+d \end{bmatrix} \in R$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} =$ $\begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix} \in R.$ Thus, R is closed under addition and multiplication. Finally, the additive inverse of $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ in $\operatorname{Mat}_2(\mathbb{R})$ is $\begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix}$, which is clearly in R. Thus, R is a subring of $\operatorname{Mat}_2(\mathbb{R})$.

(b) Show that R is isomorphic to $\mathbb{R} \times \mathbb{R}$.

Proof. Define $\varphi : R \to \mathbb{R} \times \mathbb{R}$ by $\varphi \left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right) = (a, b)$. One can show this is bijective by checking injective and surjective, but in this case it is easy to define an inverse function $\psi : \mathbb{R} \times \mathbb{R} \to R$ by $\psi(a, b) = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. It is clear that $\varphi \circ \psi$ is the identity map on $\mathbb{R} \times \mathbb{R}$ and $\psi \circ \varphi$ is the identity on R. Thus, we have φ is bijective.

Let
$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
, $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in R$. We have

$$\varphi \left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \right) = \varphi \left(\begin{bmatrix} a+c & 0 \\ 0 & b+d \end{bmatrix} \right)$$

$$= (a+c,b+d)$$

$$= (a,b) + (c,d)$$

$$= \varphi \left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right) + \varphi \left(\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \right)$$

and

$$\varphi\left(\begin{bmatrix}a & 0\\0 & b\end{bmatrix}\begin{bmatrix}c & 0\\0 & d\end{bmatrix}\right) = \varphi\left(\begin{bmatrix}ac & 0\\0 & bd\end{bmatrix}\right)$$
$$= (ac, bd)$$
$$= (a, b)(c, d)$$
$$= \varphi\left(\begin{bmatrix}a & 0\\0 & b\end{bmatrix}\right)\varphi\left(\begin{bmatrix}c & 0\\0 & d\end{bmatrix}\right)$$

Thus, φ is an isomorphism between R and $\mathbb{R} \times \mathbb{R}$.