
Math 333 Problem Set 6
Due: 03/28/16

Be sure to list EVERYONE in the that you talk to about the homework!

1. Let R be a ring with identity 1R. Set S = {n1R : n ∈ Z} where we
recall n1R = 1R + · · ·+ 1R with n-copies of 1R on the right hand side.
Show that S is a subring of R.

Proof. The first thing one needs to do here is define what we mean by
n1R for those integers not in Z≥1 since in those cases the definition
given in the problem is not sufficient. If n ∈ Z<0 we set n1R =
(−1R) + (−1R) + · · · (−1R) where there are −n copies of −1R. We
define 01R = 0R. We clearly have that S is nonempty and contains 0R
by definition of 01R.

Closed under addition: Let m,n ∈ Z. If m and n are positive then
m1R+n1R = (m+n)1R ∈ S. If m > 0 and n = 0 we have m1R+01R =
m1R + 0R = m1R ∈ S. Suppose m > 0 and n < 0. Then we have
m1R + n1R = (1R + · · · 1R) + ((−1R) + · · ·+ (−1R) = (m+ n)1R ∈ S.
Similarly, if m and n are both negative we have m1R + n1R = (m +
n)1R ∈ S. Finally, if m < 0 and n = 0 we have m1R+n1R = m1R ∈ S.

Closed under multiplication: Let m,n ∈ Z. If either m or n is 0 we
immediately have (m1R)(n1R) = 0R = 01R ∈ S. Assume m and n are

both positive. Then we have (m1R)(n1R) =
(∑m

j=1 1R

)
(
∑n

i=1 1R) =

mn1R. Similarly, one obtains the same result in the cases m and n are
both negative or one is positive and one is negative.

Closed under additive inverse: Let m1R ∈ S. Observe we have m1R +
(−m)1R = (m −m)1R = 01R = 0R, thus the additive inverse of m1R
is (−m)1R, which is in S.

Thus, S is a subring of R.

2. Let R and S be rings. Let T = {(r, 0S) : r ∈ R} be a subset of R× S.
Prove that T is a subring of R× S.

Proof. Observe that since R is a ring we have 0R ∈ R and so (0R, 0S) ∈
T . Moreover, (0R, 0S) = 0T so T is nonempty and contains the identity
element. Let (r1, 0S), (r2, 0S) ∈ T .
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Closed under addition: We have (r1, 0S) + (r2, 0S) = (r1 + r2, 0S) ∈ T , so T is closed
under addition.

Closed under multiplication: We have (r1, 02)(r2, 0S) = (r1r2, 02) ∈ T , so T is closed under
multiplication.

Closed under additive inverses: We have an additive inverse −r1 ∈ R because R is a ring. Thus,
(−r1, 0S) ∈ T is the additive inverse of (r1, 0S).

Thus, we see T is a subring of R× S.

3. Let S and T be subrings of a ring R. In (a) and (b), if the answer is
“yes,” prove it. If the answer is “no,” give a counterexample.

(a) Is S ∩ T a subring of R?

Proof. Note that since S and T are subrings, we have 0R is in
each, so is in their intersection. Let a, b ∈ S∩T . Since S is a ring
we have a+ b and ab are both in S and similarly a+ b and ab are
in T . Thus, S ∩ T is closed under addition and multiplication.
Since S is a subring we have an additive inverse x of a in S and
since T is a subring there is an additive inverse of a in T . Since
additive inverses are unique, the additive inverse of a is in S∩T .
Thus, S ∩ T is a subring of R.

(b) Is S ∪ T a subring of R?

Consider the subrings 6Z and 8Z of Z. Note that 6 ∈ 6Z and
8 ∈ 8Z but 6 + 8 = 14 is not in 6Z or 8Z, so it is not in their
union. Thus, the union of 6Z and 8Z is not closed under addition
and so not a subring.

4. (a) If ab is a zero divisor in a commutative ring R, prove that a or
b is a zero divisor.

Proof. Let ab be a zero divisor, i.e., there exists a nonzero ele-
ment c ∈ R so that abc = 0R. If bc = 0R we are done as that
means b is a zero divisor (b 6= 0R because if b = 0R, then ab = 0R
which is a contradiction since ab is a zero divisor.) If bc 6= 0R,
then a is a zero divisor. Thus, a or b is a zero divisor.
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(b) If a or b is a zero divisor in a commutative ring R and ab 6= 0R,
prove that ab is a zero divisor.

Proof. Let a or b be a zero divisor and assume ab 6= 0R. If
a is a zero divisor, then there exists a nonzero c ∈ R so that
ac = 0R = ca. Thus, c(ab) = (ca)b = 0R so ab is a zero divisor.
Similarly, if b is a zero divisor, then there exists a nonzero d ∈ R
so that bd = 0R = db. Thus, (ab)d = a(bd) = 0R. Thus, ab is a
zero divisor.

5. Assume that R = {0R, 1R, a, b} is a ring and a and b are units. Write
out the multiplication table for R.

The main issue here is to determine a2, b2 and ab. Since a is a unit we
must have a2 = 1R or ab = 1R. Suppose that a2 = 1R. Since inverses
are unique we cannot have ab = 1R; we cannot have ab = 0R because
a unit cannot be a zero divisor, and if ab = a then multiplying both
sides by a gives b = 1R, a contradiction. Thus, if a2 = 1R we must
have ab = b. However, this is a contradiction since b is a unit so we
obtain (a − 1R)b = 0R and so a = 1R or b = 0R, both of which are
contradictions. Thus, we cannot have a2 = 1R. The same argument
shows b2 cannot be 1R. Thus, it must be the case that ab = 1R = ba.
Thus, we must have a2 = b and b2 = a. This allows one to fill in the
multiplication table.

6. An element a of a ring R is nilpotent if an = 0R for some positive
integer n. Prove that R has no nonzero nilpotent elements if and only
if 0R is the only solution of the equation x2 = 0R.

Proof. First, suppose that R has no nonzero nilpotent elements. If
a is a solution to x2 = 0R, then a = 0R for otherwise a would be a
nonzero nilpotent element. Now suppose 0R is the only solution to
the equation x2 = 0R. Suppose a ∈ R is a nonzero nilpotent element,
i.e., an = 0R for some positive integer n and assume n is the smallest
such positive integer. If n is even, say n = 2k for some k ∈ Z, then
0R = a2k = (ak)2. This contradicts our assumption that 0R is only
solution to the equation x2 = 0R as ak 6= 0R by our assumption n is
minimal positive integer so that an = 0R. If n is odd, say n = 2k + 1
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for some k ∈ Z. Then we have a2k+1 = 0R. Multiplying both sides by
a gives a2k = 0R and we are in the case we just handled. Thus, we
cannot have a nonzero nilpotent element as claimed.

7. Let R be a ring with identity. If there is a smallest integer n so that
n1R = 0R, then R is said to have characteristic n. If no such n exists,
R is said to have characteristic zero.

(a) Show that Z has characteristic zero and Z/nZ has characteristic
n.

It is clear that Z has characteristic zero because m1 6= 0 for all
integers m > 0.

We clearly have n[1]n = [n]n = [0]n. However, to see that the
characteristic of Z/nZ is n we have to show there is no smaller
positive integer m so that m[1]n = [0]n. If m[1]n = [0]n, then
[m]n = [0]n, i.e., n | m. This can only happen if m = 0 or m ≥ n.
Thus, n is the characteristic of Z/nZ.

(b) What is the characteristic of Z/4Z× Z/6Z?

Set R = Z/4Z × Z/6Z. It is easy to 121R = 0R. Suppose that
m1R = 0R for some positive integer m. Then we must have
m[1]4 = [0]4 and m[1]6 = [0]6. This means that 4 | m and 6 | m,
i.e., the least common multiple of 4 and 6 must divide m. This
gives 12 | m as desired.

8. (a) Show that R =

{[
a 0
0 b

]
∈ Mat2(R)

}
is a subring of Mat2(R).

Proof. We have 0Mat2(R) =

[
0 0
0 0

]
∈ R. This givesR is nonempty

and contains the additive identity. Let

[
a 0
0 b

]
,

[
c 0
0 d

]
∈ R. We

have

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
a+ c 0

0 b+ d

]
∈ R and

[
a 0
0 b

] [
c 0
0 d

]
=
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[
ac 0
0 bd

]
∈ R. Thus, R is closed under addition and multi-

plication. Finally, the additive inverse of

[
a 0
0 b

]
in Mat2(R)

is

[
−a 0
0 −b

]
, which is clearly in R. Thus, R is a subring of

Mat2(R).

(b) Show that R is isomorphic to R× R.

Proof. Define ϕ : R → R × R by ϕ

([
a 0
0 b

])
= (a, b). One can

show this is bijective by checking injective and surjective, but in
this case it is easy to define an inverse function ψ : R × R → R

by ψ(a, b) =

[
a 0
0 b

]
. It is clear that ϕ ◦ ψ is the identity map

on R × R and ψ ◦ ϕ is the identity on R. Thus, we have ϕ is
bijective.

Let

[
a 0
0 b

]
,

[
c 0
0 d

]
∈ R. We have

ϕ

([
a 0
0 b

]
+

[
c 0
0 d

])
= ϕ

([
a+ c 0

0 b+ d

])
= (a+ c, b+ d)

= (a, b) + (c, d)

= ϕ

([
a 0
0 b

])
+ ϕ

([
c 0
0 d

])
and

ϕ

([
a 0
0 b

] [
c 0
0 d

])
= ϕ

([
ac 0
0 bd

])
= (ac, bd)

= (a, b)(c, d)

= ϕ

([
a 0
0 b

])
ϕ

([
c 0
0 d

])
.

Thus, ϕ is an isomorphism between R and R× R.


