Math 333 Problem Set 4 Due: 03/02/16

Be sure to list EVERYONE in the that you talk to about the homework!

1. Compute $([a]_2 + [b]_2)^2$ for any $a, b \in \mathbb{Z}$.

We have $([a]_2 + [b]_2)^2 = [a]_2^2 + 2[a]_2[b]_2 + [b]_2^2 = [a]_2^2 + [b]_2^2$ since $2[a]_2[b]_2 = [0]_2$.

2. Which of [0], [1], [2], [3] is $[5^{627}]$ equal to in $\mathbb{Z}/4\mathbb{Z}$?

We have $[5]_4 = [1]_4$, so $[5^{627}]_4 = [5]_4^{627} = [1]_4^{627} = [1]_4$. This relies on the following lemma.

Lemma 1. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}_{>1}$. If $[a]_n = [b]_n$ then $[a]_n^k = [b]_k$ for all $k \in \mathbb{Z}_{\geq 1}$.

Proof. We prove this by induction with the base case being k = 1, which is true by assumption. Assume that for some $m \in \mathbb{Z}_{\geq 1}$ we have $[a]_n^m = [b]_n^m$. We have $[a]_n^{m+1} = [a]_n^m [a]_n = [b]_n^m [b]_n = [b]_n^{m+1}$. Thus, the lemma follows by induction.

3. (a) Prove or disprove: If $[a]_n[b]_n = [a]_n[c]_n$ in $\mathbb{Z}/n\mathbb{Z}$ with $[a]_n \neq [0]_n$, then $[b]_n = [c]_n$.

This is not true. Let n = 6, a = 2, b = 4 and c = 1. Then $[2]_6[4]_6 = [8]_6 = [2]_6 = [2]_6[1]_6$ but $[4]_6 \neq [1]_6$.

(b) Prove or disprove: If $[a]_p[b]_p = [a]_p[c]_p$ in $\mathbb{Z}/p\mathbb{Z}$ with $[a]_p \neq [0]_p$, then $[b]_p = [c]_p$ for p a prime number.

Note that if $[a]_p \neq [0]_p$ then $p \nmid a$, i.e., gcd(a, p) = 1. Thus, there exists $m, n \in \mathbb{Z}$ so that am + pn = 1, i.e., $[a]_p[m]_p = [1]_p$. Suppose

that $[a]_p[b]_p = [a]_p[c]_p$. Multiplying both sides by $[m]_p$ we obtain

$$\begin{split} [b]_p &= [1]_p [b]_p \\ &= ([m]_p [a]_p) [b]_p \\ &= [m]_p ([a]_p [b]_p) \\ &= [m]_p ([a]_p [c]_p) \\ &= ([m]_p [a]_p) [c]_p \\ &= [1]_p [c]_p \\ &= [c]_p. \end{split}$$

4. Write out addition and multiplication tables for $\mathbb{Z}/6\mathbb{Z}$.

Note I omit the $[\cdot]_6$ here to save typing.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	5	5	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4
•	0	1	2	3	4	5
· 0	0	1	2	3 0	4	$\frac{5}{0}$
	0	0	0	0	0	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0 0	0 1	$\begin{array}{c} 0 \\ 2 \end{array}$	0 3	$\begin{array}{c} 0 \\ 4 \end{array}$	$\begin{array}{c} 0 \\ 5 \end{array}$
	0 0 0	0 1 2	0 2 4	0 3 0	$\begin{array}{c} 0 \\ 4 \\ 2 \end{array}$	$\begin{array}{c} 0 \\ 5 \\ 4 \end{array}$

5. (a) Show that $10^n \equiv 1 \pmod{9}$ for every positive integer n.

Proof. Observe we have $10 \equiv 1 \pmod{9}$, so $10^n \equiv 1^n \pmod{9} \equiv 1 \pmod{9}$ where we use the lemma above again.

(b) Prove that every positive integer is congruent to the sum of its digits modulo 9. (For example, $38 \equiv 11 \pmod{9}$.)

Proof. Let $m \in \mathbb{Z}_{>0}$ and write $m = a_n a_{n-1} \cdots a_1 a_0$ with $a_i \in \{0, 1, \dots, 9\}$. Then we have

$$m = \sum_{j=0}^{n} a_j 10^j$$
$$\equiv \sum_{j=0}^{n} a_j 10^j \pmod{9}$$
$$\equiv \sum_{j=0}^{n} a_j \cdot 1 \pmod{9}$$
$$\equiv \sum_{j=0}^{n} a_j \pmod{9}.$$

6. Find all units and zero divisors in $\mathbb{Z}/6\mathbb{Z}$.

The units are $[1]_6$ and $[5]_6$ and the zero divisors are $[2]_6, [3]_6$, and $[4]_6$.

7. How many solutions does the equation $[6]_8 x = [4]_8$ have in $\mathbb{Z}/8\mathbb{Z}$?

One can just plug in every value of $\mathbb{Z}/8\mathbb{Z}$ to see the solutions are $[2]_8$ and $[6]_8$ as $[6]_8[2]_8 = [12]_8 = [4]_8$ and $[6]_8[6]_8 = [36]_8 = [4]_8$.

8. Let $[a]_n, [b]_n \in \mathbb{Z}/n\mathbb{Z}$. Prove that if $[a]_n$ is a unit then the equation $[a]_n x = [b]_n$ has a unique solution in $\mathbb{Z}/n\mathbb{Z}$.

Proof. Let $[a]_n$ be a unit, i.e., there exists $[c]_n \in \mathbb{Z}/n\mathbb{Z}$ so that $[a]_n[c]_n = [1]_n$. If we set $x = [cb]_n$ then we have

$$[a]_{n}x = [a]_{n}[cb]_{n}$$

= $[ac]_{n}[b]_{n}$
= $[1]_{n}[b]_{n}$
= $[b]_{n}.$

Thus, $[cb]_n$ is a solution. Now suppose $[d]_n$ is another solution. Then we have

$$\begin{split} [d]_n &= [1]_n [d]_n \\ &= [ac]_n [d]_n \\ &= [c]_n [a]_n [d]_n \\ &= [c]_n [b]_n \\ &= [cb]_n \\ &= x. \end{split}$$

Thus, the solution is unique.

9. Almost every item sold has a UPC number $d_1d_2\cdots d_{11}d_{12}$. The last digit d_{12} is a check digit chosen so that

$$3\sum_{j=0}^{5} d_{2j+1} + \sum_{j=1}^{6} d_{2j} \equiv 0 \pmod{10}.$$

If the congruence does not hold, an error has been made and the item must be scanned again or the UPC code entered by hand. Is 040293673034 a possible UPC code?

To be a valid UPC code we must have

$$3(0+0+9+6+3+3) + (4+2+3+7+4) \equiv 0 \pmod{10}.$$

Observe the left hand side is equal to 83, so this is not a valid UPC code.