
Math 333 Problem Set 3
Due: 02/24/16

Solutions

1. Use the Euclidean algorithm to find gcd(5858, 1436). Write gcd(5858, 1436)
as a linear combination of 5858 and 1436.

We have

5858 = 1436(4) + 114

1436 = 114(12) + 68

114 = 68(1) + 46

68 = 46(1) + 22

46 = 2(22) + 2

22 = 2(11).

Thus, we have gcd(5858, 1436) = 2. To write 2 as a linear combination
of 5858 and 1436 we use these equations. First, note

2 = 46 + 22(−2)

22 = 68 + 46(−1)

46 = 114 + 68(−1)

68 = 1436 + 114(−12)

114 = 5858 + 1436(−4).

Thus, we have

2 = 46 + 22(−2)

= 46 + (−2)(68 + 46(−1))

= 68(−2) + 46(3)

= 68(−2) + 3(114 + 68(−1))

= 114(3) + 68(−5)

= 114(3) + (−5)(1436 + 114(−2))

= 1436(−5) + 114(63)

= 1436(−5) + 63(5858 + 1436(−4))

= 5858(63) + 1436(−257).
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2. Prove that if gcd(a, b) = d then gcd
(
a
d ,

b
d

)
= 1.

Proof. Let d = gcd(a, b). There exists m,n ∈ Z so that d = am + bn.
Since d | a there exists s ∈ Z so that a = ds and since d | b there exists
t ∈ Z so that b = dt. We have

d = am + bn

= dsm + dtn

= d(sm + tn),

i.e., 1 = sm+ tn. From our result in class this gives gcd(s, t) = 1, i.e.,
gcd

(
a
d ,

b
d

)
= 1.

3. Prove that gcd(a, b) = gcd(a, b + at) for all t ∈ Z.

Proof. Let d = gcd(a, b) and e = gcd(a, b + at). Note that since d | a
and d | (b + at), we must have d | e. Similarly, we have e | a and
e | b = (b + at)− a(t). Thus e | d. Since d, e are both positive integers
and they divide each other, they must be equal.

4. Prove or disprove: If p is a prime and p | (a2 + b2) and p | (c2 + d2),
then p | (a2 − c2).

Let p = 2. Then p | (22 + 02) = 4 and p | (12 + 12) = 2, but
p - (22 − 12) = 3.

5. Prove that if c2 = ab and gcd(a, b) = 1 then a and b are perfect squares.

Proof. Let p be a prime that divides a. Then p | c2 = c · c, so p | c.
Write c = pmd for m, d ∈ Z≥1 where p - d. Then we have c2 = p2md2.
Since gcd(a, b) = 1, we must have that p - b, i.e., gcd(p2m, b) = 1. Since
p2m | ab and gcd(p2m, b) = 1, we must have p2m | a. Moreover, we
cannot have p2m+1 | a as this would imply p2m+1 | c2. Thus, a = p2me
for some e ∈ Z≥1 with p - e. This shows that every prime that divides
a occurs to an even power in the prime factorization of a, i.e., a is
a perfect square. The same argument works to show b is a perfect
square.
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6. Recall that one has (a + b)p =
∑p

k=0

(
p
k

)
akbp−k where

(
p
k

)
= p!

k!(p−k)! .

Prove that if p is prime and 0 < k < p then p |
(
p
k

)
.

Proof. Let 0 < k < p. We have
(
p
k

)
∈ Z. Thus, k!(p− k)! | p!. Observe

that since 0 < k < p we have p - k! and p - (p− k)!. Since p is prime,
we must have gcd(p, k!) = 1 = gcd(p, (p − k)!). Thus, it must be the

case that k!(p−k)! | (p−1)!, i.e., (p−1)!
k!(p−k)! ∈ Z, so p |

(
p
k

)
as desired.

7. If r ≡ 3 (mod 10) and s ≡ −7 (mod 10), what is 2r+ 3s congruent to
modulo 10?

We have

2r + 3s ≡ 2(3) + 3(−7) (mod 10)

≡ −15 (mod 10)

≡ 5 (mod 10).

8. If a ≡ b (mod n) and k | n, is it true that a ≡ b (mod k)? If so, prove
it. If not, give a counterexample.

Proof. Since k | n there exists m ∈ Z so that n = mk. The fact
that a ≡ b (mod n) means n | (a − b), i.e., there exists d ∈ Z so that
a− b = nd = (mk)d. Thus, k | (a− b), i.e., a ≡ b (mod k).


