Math 333 Problem Set 3 Due: 02/24/16 Solutions

1. Use the Euclidean algorithm to find gcd(5858, 1436). Write gcd(5858, 1436) as a linear combination of 5858 and 1436.

We have

$$5858 = 1436(4) + 114$$
$$1436 = 114(12) + 68$$
$$114 = 68(1) + 46$$
$$68 = 46(1) + 22$$
$$46 = 2(22) + 2$$
$$22 = 2(11).$$

Thus, we have gcd(5858, 1436) = 2. To write 2 as a linear combination of 5858 and 1436 we use these equations. First, note

$$2 = 46 + 22(-2)$$

$$22 = 68 + 46(-1)$$

$$46 = 114 + 68(-1)$$

$$68 = 1436 + 114(-12)$$

$$114 = 5858 + 1436(-4).$$

Thus, we have

$$2 = 46 + 22(-2)$$

= 46 + (-2)(68 + 46(-1))
= 68(-2) + 46(3)
= 68(-2) + 3(114 + 68(-1))
= 114(3) + 68(-5)
= 114(3) + (-5)(1436 + 114(-2))
= 1436(-5) + 114(63)
= 1436(-5) + 63(5858 + 1436(-4)))
= 5858(63) + 1436(-257).

2. Prove that if gcd(a, b) = d then $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Proof. Let d = gcd(a, b). There exists $m, n \in \mathbb{Z}$ so that d = am + bn. Since $d \mid a$ there exists $s \in \mathbb{Z}$ so that a = ds and since $d \mid b$ there exists $t \in \mathbb{Z}$ so that b = dt. We have

$$d = am + bn$$
$$= dsm + dtn$$
$$= d(sm + tn)$$

i.e., 1 = sm + tn. From our result in class this gives gcd(s, t) = 1, i.e., $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

3. Prove that gcd(a, b) = gcd(a, b + at) for all $t \in \mathbb{Z}$.

Proof. Let d = gcd(a, b) and e = gcd(a, b + at). Note that since $d \mid a$ and $d \mid (b + at)$, we must have $d \mid e$. Similarly, we have $e \mid a$ and $e \mid b = (b + at) - a(t)$. Thus $e \mid d$. Since d, e are both positive integers and they divide each other, they must be equal.

4. Prove or disprove: If p is a prime and $p \mid (a^2 + b^2)$ and $p \mid (c^2 + d^2)$, then $p \mid (a^2 - c^2)$.

Let p = 2. Then $p \mid (2^2 + 0^2) = 4$ and $p \mid (1^2 + 1^2) = 2$, but $p \nmid (2^2 - 1^2) = 3$.

5. Prove that if $c^2 = ab$ and gcd(a, b) = 1 then a and b are perfect squares.

Proof. Let *p* be a prime that divides *a*. Then *p* | $c^2 = c \cdot c$, so *p* | *c*. Write $c = p^m d$ for $m, d \in \mathbb{Z}_{\geq 1}$ where *p* ∤ *d*. Then we have $c^2 = p^{2m} d^2$. Since gcd(*a*, *b*) = 1, we must have that *p* ∤ *b*, i.e., gcd(p^{2m}, b) = 1. Since $p^{2m} \mid ab$ and gcd(p^{2m}, b) = 1, we must have $p^{2m} \mid a$. Moreover, we cannot have $p^{2m+1} \mid a$ as this would imply $p^{2m+1} \mid c^2$. Thus, $a = p^{2m}e$ for some $e \in \mathbb{Z}_{\geq 1}$ with $p \nmid e$. This shows that every prime that divides *a* occurs to an even power in the prime factorization of *a*, i.e., *a* is a perfect square. □ 6. Recall that one has $(a + b)^p = \sum_{k=0}^p {p \choose k} a^k b^{p-k}$ where ${p \choose k} = \frac{p!}{k!(p-k)!}$. Prove that if p is prime and 0 < k < p then $p \mid {p \choose k}$.

Proof. Let 0 < k < p. We have $\binom{p}{k} \in \mathbb{Z}$. Thus, $k!(p-k)! \mid p!$. Observe that since 0 < k < p we have $p \nmid k!$ and $p \nmid (p-k)!$. Since p is prime, we must have gcd(p,k!) = 1 = gcd(p,(p-k)!). Thus, it must be the case that $k!(p-k)! \mid (p-1)!$, i.e., $\frac{(p-1)!}{k!(p-k)!} \in \mathbb{Z}$, so $p \mid \binom{p}{k}$ as desired. \Box

7. If $r \equiv 3 \pmod{10}$ and $s \equiv -7 \pmod{10}$, what is 2r + 3s congruent to modulo 10?

We have

$$2r + 3s \equiv 2(3) + 3(-7) \pmod{10}$$

 $\equiv -15 \pmod{10}$
 $\equiv 5 \pmod{10}.$

8. If $a \equiv b \pmod{n}$ and $k \mid n$, is it true that $a \equiv b \pmod{k}$? If so, prove it. If not, give a counterexample.

Proof. Since $k \mid n$ there exists $m \in \mathbb{Z}$ so that n = mk. The fact that $a \equiv b \pmod{n}$ means $n \mid (a - b)$, i.e., there exists $d \in \mathbb{Z}$ so that a - b = nd = (mk)d. Thus, $k \mid (a - b)$, i.e., $a \equiv b \pmod{k}$.