Math 333 Problem Set 3 Due: 02/24/16

Be sure to list EVERYONE in the that you talk to about the homework!

- 1. Use the Euclidean algorithm to find gcd(5858, 1436). Write gcd(5858, 1436) as a linear combination of 5858 and 1436.
- 2. Prove that if gcd(a, b) = d then $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
- 3. Prove that gcd(a, b) = gcd(a, b + at) for all $t \in \mathbb{Z}$.
- 4. Prove or disprove: If p is a prime and $p \mid (a^2 + b^2)$ and $p \mid (c^2 + d^2)$, then $p \mid (a^2 c^2)$.
- 5. Prove that if $c^2 = ab$ and gcd(a, b) = 1 then a and b are perfect squares.
- 6. Recall that one has $(a+b)^p = \sum_{k=0}^p {p \choose k} a^k b^{p-k}$ where ${p \choose k} = \frac{p!}{k!(p-k)!}$. Prove that if p is prime and 0 < k < p then $p \mid {p \choose k}$.
- 7. If $r \equiv 3 \pmod{10}$ and $s \equiv -7 \pmod{10}$, what is 2r + 3s congruent to modulo 10?
- 8. If $a \equiv b \pmod{n}$ and $k \mid n$, is it true that $a \equiv b \pmod{k}$? If so, prove it. If not, give a counterexample.