Math 333 Problem Set 2 Due: 02/17/16 Solutions

1. Find the quotient and remainder when a = -614 is divided by b = 13.

We have -614 = 13(-48) + 10, so q = -48 and r = 10.

2. Prove that the square of any integer a is either of the form 3k or 3k+1 for some integer k.

Let $a \in \mathbb{Z}$. The division algorithm allows us to write a = 3q + r for some $q, r \in \mathbb{Z}$ with $0 \le r < 3$. If r = 0, then $a^2 = 9q^2 = 3(3q^2)$. If r = 1, then $a^2 = (3q+1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1$. If r = 2, then $a^2 = (3q+2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1$. Thus, we have a^2 is of the form 3k or 3k + 1 in every possible case.

3. Use the division algorithm to prove that every odd integer is of the form 4k + 1 or 4k + 3 for some integer k.

Let $n \in \mathbb{Z}$ be an odd integer. The division algorithm allows us to write n = 4q + r for some $q, r \in \mathbb{Z}$ with $0 \le r < 4$. Observe that if r = 0 then n = 4q is even and if r = 2 we have n = 4q + 2, which is even. Thus, if n is odd we must have n = 4q + 1 or n = 4q + 3, as claimed.

4. If $a \mid b$ and $b \mid c$, prove that $a \mid c$.

Since $a \mid b$ there exists $m \in \mathbb{Z}$ so that b = am. Similarly, since $b \mid c$ there exists $n \in \mathbb{Z}$ so that c = bn. Thus, c = bn = (am)n = a(mn). Thus, $a \mid c$.

5. If $a \mid b$ and $a \mid c$ prove that $a \mid (bm + cn)$ for all integers $m, n \in \mathbb{Z}$.

Since $a \mid b$ there exists $s \in \mathbb{Z}$ so that b = as and since $a \mid c$ there exists $t \in \mathbb{Z}$ so that c = bt. Thus, we have bm + cn = (as)m + (at)n =

a(sm + tn). Hence $a \mid (bm + cn)$.

6. If $a \mid c$ and $b \mid c$, does $ab \mid c$? Be sure to justify your answer.

This is a false statement. For instance, take a = b = c = 2. Then $2 \mid 2$ but $2 \cdot 2 = 4 \nmid 2$.

7. Prove that gcd(n, n+1) = 1 for all $n \in \mathbb{Z}$.

Let $d = \gcd(n, n+1)$. Then d > 0 and $d \mid ((n+1) + (-1)n) = 1$ by problem 5. Thus, we must have d = 1.