
Math 333 Problem Set 11
Due: 05/18/16

Be sure to list EVERYONE in the that you talk to about the homework!

1. Let I = 〈[5]20〉 ⊂ Z/20Z. Prove that (Z/20Z)/I ∼= Z/5Z.

Proof. Define ϕ : Z/20Z → Z/5Z by ϕ([a]20) = [a]5. Since 5 | 20 we
have shown before this is a well-defined surjective ring homomorphism.
We claim I = kerϕ. Let a ∈ I, i.e., we can write a = 5b for some b ∈ Z.
We have ϕ([a]20) = [a]5 = [5]5[b]5 = [0]5, so I ⊂ kerϕ. Let [a]20 ∈ kerϕ
so [a]5 = [0]5, i.e., 5 | a. Thus, [a]20 ∈ I and so kerϕ = I. Now we
apply the first isomorphism theorem to conclude the result.

2. (a) Let p ∈ Z be a prime number. Let T be the set of rational
numbers in lowest terms whose denominators are not divisible by
p. Prove that T is a ring.

Proof. Note that T ⊂ Q so it is enough so show T is a subring.
We have 0 = 0/1 ∈ T so T contains the identity element. Let
a/b, c/d ∈ T . We have a

b −
c
d = ad−bc

bd ∈ T since p - b and p - d
implies p - bd as p is prime. Similarly a

b
c
d = ac

bd ∈ T . Thus, T is a
subring of Q.

(b) Let I be the subset of T consisting of elements whose numerators
are divisible by p. Prove I is an ideal in T .

Proof. First, observe it is clear I ⊂ T . We have 0 = 0/1 ∈ I as
p | 0. Let a/b, c/d ∈ I and r/s ∈ T . We have a

b −
c
d = ad−bc

bd ∈ T
since p | a and p | c implies p - ad− bc. Similarly r

s
a
b = ra

sb ∈ I as
p | a implies p | ra. Thus, I is an ideal in T .

(c) Prove that T/I ∼= Z/pZ.

Proof. Let a/b ∈ T and consider the coset a
b + I. Note that

gcd(p, b) = 1 so there exists x, y ∈ Z so that bx+ py = 1. Multi-
plying this by a we obtain a = bx+ py, i.e., p | a− bx. We claim
that a

b + I = x
1 + I. We have a

b −
x
1 = a−bx

b . Since p | a − bx,
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we have a−bx
b ∈ I so a

b + I = x
1 + I, i.e., we can represent each

coset by an integer. Moreover, we have this x is unique modulo
p. If by ≡ by (mod p), then p | b(x− y). Since p - b we must have
p | (x− y), i.e., x ≡ y (mod p) as claimed.

Define ϕ : T/I → Z/pZ by sending a
b + I to [x]p where x ∈ Z is

chosen so that a ≡ bx (mod p). This is well-defined by the last
paragraph. Let [a]p ∈ Z/pZ. We have ϕ(a/1 + I) = [a]p. Thus, ϕ
is surjective. Let a

b + I and c
d + I be in T/I and choose x, y ∈ Z

as above so that a
b + I = x/1 + I and c

d + I = y/1 + I. Observe
that a+ c ≡ bx+dy (mod p) and ac ≡ bxdy (mod p). This gives

ϕ(a/b+ I + c/d+ I) = ϕ(x/1 + I + y/1 + I)

= ϕ((x+ y)/1 + I)

= [x+ y]p

= [x]p + [y]p

= ϕ(x/1 + I) + ϕ(y/1 + I)

= ϕ(a/b+ I) + ϕ(c/d+ I)

and

ϕ((a/b+ I)(c/d+ I)) = ϕ((x/1 + I)(y/1 + I))

= ϕ((xy)/1 + I)

= [xy]p

= [x]p[y]p

= ϕ(x/1 + I)ϕ(y/1 + I)

= ϕ(a/b+ I)ϕ(c/d+ I).

Thus, ϕ is a homomorphism. It only remains to show that ϕ
is injective. Let a/b + I ∈ kerϕ. Thus, we must have p | x.
However, this shows that since a ≡ bx (mod p) that necessarily
p | a, i.e., a/b+ I = 0 + I. Thus, kerϕ = {0 + I} and the map is
injective. Hence, we have shown ϕ is an isomorphism.

3. Let Q(i) = {a+ bi : a, b ∈ Q} where i2 = −1.

(a) Show the map ϕ : Q(i) → Q(i) sending a + bi to a − bi is an
isomorphism.
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Proof. Let a + bi ∈ Q(i). We have ϕ(a − bi) = a + bi so ϕ is
surjective. We have a+ bi = c+ di if and only if a = b and c = d.
Thus, if ϕ(a + bi) = ϕ(c + di) then a − bi = c − di so a = b and
c = d, i.e., ϕ is injective.

Let a+ bi, c+ di ∈ Q(i). We have

ϕ((a+ bi) + (c+ di)) = ϕ((a+ c) + (b+ d)i)

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= ϕ(a+ bi) + ϕ(c+ di)

and

ϕ((a+ bi)(c+ di)) = ϕ((ac− bd) + (ad+ bc)i)

= (ac− bd)− (ad+ bc)i

= (a− bi)(c− di)
= ϕ(a+ bi)ϕ(c+ di).

Thus, ϕ is an isomorphism.

(b) Show that Q[x]/〈x2 + 1〉 ∼= Q(i).

Proof. Define ψ : Q[x]→ Q(i) by sending f to f(i). As has been
explained in class, we can view f ∈ Q(i)[x] and so f induces a map
from Q(i) to Q(i); this is what f(i) means. Let a + bi ∈ Q(i).
We have ψ(a + bx) = a + bi so ψ is surjective. As this is an
evaluation map, it is a ring homomorphism. It only remains to
show that kerψ = 〈x2 + 1〉. Let f ∈ 〈x2 + 1〉. Then f = (x2 + 1)g
for some g ∈ Q[x]. Thus, f(i) = (i2 + 1)g(i) = 0 so f ∈ kerψ.
Let f ∈ kerψ, i.e., f(i) = 0. This gives that i is a root of
f . We showed in class this means τ(i) is a root of τ(f) for any
τ : Q(i)→ Q(i) an isomorphism where τ(f) is defined by applying
τ to the coefficients of f . Applying this result with the map
ϕ from part (a) gives that −i = ϕ(i) is a root of ϕ(f) = f
where we have used f has coefficients in Q so ϕ(f) = f . Thus,
x2 + 1 = (x− i)(x+ i) | f and so kerψ = 〈x2 + 1〉 as claimed.

4. Let R be a commutative ring with identity. Prove that R is a field if
and only if 〈0R〉 is a maximal ideal.
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Proof. We know from our work in class that 〈0R〉 is a maximal ideal if
and only if R/〈0R〉 is a field. However, define ϕ : R→ R by r 7→ r. We
see this is a surjective ring homomorphism with kernel 〈0R〉, so the first
isomorphism theorem gives R/〈0R〉 ∼= R. This gives the result.

5. Show that the ideal 〈x− 1〉 in Z[x] is a prime ideal but not a maximal
ideal.

Proof. Define the map ϕ : Z[x] → Z by f 7→ f(1). Let m ∈ Z. Then
ϕ(m) = m so the map is surjective. As we have shown in class several
times, an evaluation map is a ring homomorphism so this is a surjective
ring homomorphism. We claim kerϕ = 〈x − 1〉. Let f ∈ 〈x − 1〉 so
f = (x− 1)g for some g ∈ Z[x]. Thus, f(1) = (1− 1)g(1) = 0. Thus,
〈x − 1〉 ⊂ kerϕ. Conversely, if f(1) = 0 then 1 is a root of f and
so (x − 1) | f , i.e., f ∈ 〈x − 1〉. Thus, kerϕ = 〈x − 1〉. The first
isomorphism theorem gives Z[x]/〈x − 1〉 ∼= Z. Since Z is an integral
domain, 〈x − 1〉 is a prime ideal, but since Z is not a field 〈x − 1〉 is
not a maximal ideal.

6. Let p be a fixed prime number in Z. Let J be the set of polynomials
in Z[x] whose constant terms are divisible by p. Prove that J is a
maximal ideal in Z[x].

Proof. Define ϕ : Z[x]→ Z/pZ by sending f =
∑n

j=0 ajx
j to [a0]p. We

have seen before that the map Z[x]→ Z given by sending a polynomial
to its constant term is a surjective ring homomorphism, and the map
Z → Z/pZ given by sending a to [a]p is a surjective ring homomor-
phism. It is clear that ϕ is a composition of these two maps, and so is
a surjective ring homomorphism as the composition of surjective maps
is surjective and the composition of ring homomorphisms is a ring ho-
momorphism. Observe that if f ∈ J then ϕ(f) = [0]p. Moreover, if
f ∈ kerϕ then the constant term of f must be divisible by p. Thus,
J = kerϕ. Since the kernel of a ring homomorphism is an ideal, this
shows J is an ideal. Moreover, the first isomorphism theorem gives
Z[x]/J ∼= Z/pZ, a field. Thus J is a maximal ideal as claimed.


