Math 333 Problem Set 11 Due: 05/18/16

Be sure to list EVERYONE in the that you talk to about the homework!

- 1. Let $I = \langle [5]_{20} \rangle \subset \mathbb{Z}/20\mathbb{Z}$. Prove that $(\mathbb{Z}/20\mathbb{Z})/I \cong \mathbb{Z}/5\mathbb{Z}$.
- 2. (a) Let $p \in \mathbb{Z}$ be a prime number. Let T be the set of rational numbers in lowest terms whose denominators are not divisible by p. Prove that T is a ring.
 - (b) Let I be the subset of T consisting of elements whose numerators are divisible by p. Prove I is an ideal in T.
 - (c) Prove that $T/I \cong \mathbb{Z}/p\mathbb{Z}$.
- 3. Let $\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$ where $i^2 = -1$.
 - (a) Show the map $\varphi : \mathbb{Q}(i) \to \mathbb{Q}(i)$ sending a + bi to a bi is an isomorphism.
 - (b) Show that $\mathbb{Q}[x]/\langle x^2+1\rangle \cong \mathbb{Q}(i)$.
- 4. Let R be a commutative ring with identity. Prove that R is a field if and only if $\langle 0_R \rangle$ is a maximal ideal.
- 5. Show that the ideal $\langle x 1 \rangle$ in $\mathbb{Z}[x]$ is a prime ideal but not a maximal ideal.
- 6. Let p be a fixed prime number in \mathbb{Z} . Let J be the set of polynomials in $\mathbb{Z}[x]$ whose constant terms are divisible by p. Prove that J is a maximal ideal in $\mathbb{Z}[x]$.