
Math 333 Problem Set 10
Due: 05/11/16

Be sure to list EVERYONE in the that you talk to about the homework!

1. (a) Prove the set T of matrices of the form

[
a b
0 a

]
with a, b ∈ R is a

subring of Mat2(R).

Proof. Note that the zero matrix is in T clearly. Let

[
a b
0 a

]
,

[
c d
0 c

]
∈

T . Then we have[
a b
0 a

]
−
[
c d
0 c

]
=

[
a− c b− d

0 a− c

]
∈ T,

[
a b
0 a

] [
c d
0 c

]
=

[
ac ad + bc
0 ac

]
∈ T,

and [
c d
0 c

] [
a b
0 a

]
=

[
ac ad + bc
0 ac

]
∈ T.

Thus, T is a subring of Mat2(R).

(b) Prove the set I of matrices of the form

[
0 b
0 0

]
with b ∈ R is an

ideal in the ring T .

Proof. We clearly have the zero matrix is in I. Let

[
0 b
0 0

]
,

[
0 d
0 0

]
∈

I and

[
e f
0 e

]
∈ T . Then we have

[
0 b
0 0

]
−
[
0 d
0 0

]
=

[
0 b− d
0 0

]
∈ I

and [
e f
0 e

] [
0 b
0 0

]
=

[
0 eb
0 0

]
∈ I.

Note that we saw in part (a) that the multiplication in T is com-
mutative so we only need to check one-sided multiplication here
as well. Thus I is an ideal in T .
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(c) Show that every coset in T/I can be written in the form

[
a 0
0 a

]
+

I.

Proof. Let

[
a b
0 a

]
+ I ∈ T/I. We have

[
a b
0 a

]
+ I =

([
a 0
0 a

]
+

[
0 b
0 0

])
+ I

=

[
a 0
0 a

]
+

([
0 b
0 0

]
+ I

)
=

[
a 0
0 a

]
+ I.

2. Let R be a ring. Show that the map ϕ : R[x] → R that sends each
polynomial to its constant term is a surjective ring homomorphism.

Proof. Let r ∈ R. Since R ⊂ R[x], we have r ∈ R[x] and ϕ(r) = r.
Thus the map is surjective. Let f =

∑m
i=0 ajx

i, g =
∑n

j=0 x
j ∈ R[x].

Without loss of generality assume m ≤ n. Define am+1 = am+2 =
· · · = an = 0 so we can write f =

∑n
i=0 aix

i. We have

ϕ(f + g) = ϕ

 n∑
j=0

(aj + bj)x
j


= a0 + b0

= ϕ(f) + ϕ(g).

Recall that fg =
m+n∑
j=0

cjx
j where cj =

j∑
k=0

akbj−k. Note the constant

term here is c0 = a0b0. This gives

ϕ(fg) = a0b0

= ϕ(f)ϕ(g).

Thus, ϕ is a surjective ring homomorphism.
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3. Let F be a field, R a nonzero ring, and ϕ : F → R a surjective ring
homomorphism. Prove that ϕ is an isomorphism.

Proof. Let K = kerϕ. Since K is an ideal of F we know from the
previous homework set that K = {0F } or K = F . If K = {0F } we
are done. Suppose K = F . This gives ϕ(F ) = {0R}. However, since
ϕ is surjective we must have ϕ(F ) = R. This contradicts R being a
nonzero ring so it must be that K = {0F }.

4. (a) Let ϕ : R → S be a surjective homomorphism of rings. Let I be
an ideal in R. Prove that ϕ(I) is an ideal in S.

Proof. We have 0S ∈ ϕ(I) because 0R ∈ I as I is an ideal and
we know ϕ(0R) = 0S because ϕ is a ring homomorphism. Let
s1, s2 ∈ ϕ(I) and s ∈ S. Since ϕ is surjective there exists r1, r2 ∈
I and r ∈ R so that ϕ(r1) = s1, ϕ(r2) = s2, and ϕ(r) = s. We
have s1 − s2 = ϕ(r1) − ϕ(r2) = ϕ(r1 − r2) so s1 − s2 ∈ ϕ(I) as
r1 − r2 ∈ I. Similarly, we have ss1 = ϕ(r)ϕ(r1) = ϕ(rr1) ∈ ϕ(I)
and s1s = ϕ(r1)ϕ(r) = ϕ(r1r) ∈ ϕ(I) using that rr1, r1r ∈ I
because I is an ideal. Thus, ϕ(I) is an ideal.

(b) Is part (a) true if ϕ is not surjective? Prove it is true or give a
counterexample.

This is not true if ϕ is not surjective. Consider the map ϕ :
Z → Q given by ϕ(n) = n/1. It is straightforward to check this
is a homomorphism. We have Z is certainly an ideal in Z, but
ϕ(Z) = Z, which we have already seen in class is not an ideal in
Q.

5. Let I be an ideal in a ring R. Prove that every element in R/I has a
square root if and only if for every r ∈ R there exists a ∈ R so that
r − a2 ∈ I.

Proof. Let r + I ∈ R/I and suppose r + I has a square root, i.e, there
exists a + I ∈ R/I so that (a + I)2 = r + I. We can rewrite this as
a2+I = r+I, i.e., r−a2 ∈ I. Now suppose for every r ∈ R there exists
a ∈ R so that r− a2 ∈ I. Equivalently we have (r− a2) + I = 0R + I,
i.e, r + I = a2 + I = (a + I)2. Thus, r + I has a square-root.
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6. (a) Let I and K be ideals in a ring R with K ⊂ I. Prove that
I/K = {a + K : a ∈ I} is an ideal in the quotient ring R/K.

Proof. Since I is an ideal we have 0R ∈ I, so 0R/K = 0R + K ∈
I/K. Let a + K, b + K ∈ I/K and r + K ∈ R/K. We have
(a+K)− (b+K) = (a− b)+K ∈ I/K since a− b ∈ I. Moreover,
since I is an ideal we have ra ∈ I and ar ∈ I so (r+K)(a+K) =
ra+K ∈ I/K and (a+K)(r +K) = ar +K ∈ I/K. Thus, I/K
is an ideal in R/K.

(b) Prove that (R/K)/(I/K) ∼= R/I. (Hint: Define a map ϕ :
R/K → R/I given by ϕ(r + K) = r + I. Show this is well-
defined, a surjective ring homomorphism, and find its kernel.)

Proof. Define ϕ : R/K → R/I by ϕ(r + K) = r + I. We first
must show this map is well-defined. Let r1+K = r2+K in R/K,
i.e., r1 = r2 + k for some k ∈ K. This gives

ϕ(r1 + K) = r1 + I

= (r2 + k) + I

= r2 + I (since k ∈ K ⊂ I)

= ϕ(r2 + K).

Thus, ϕ is well-defined.

Let r + I ∈ R/I. We have ϕ(r + K) = r + I so ϕ is surjective.

Let r1 + I, r2 + I ∈ R/I. Then

ϕ(r1 + K + r2 + K) = ϕ((r1 + r2) + K)

= (r1 + r2) + I

= r1 + I + r2 + I

ϕ(r1 + K) + ϕ(r2 + K)

and

ϕ((r1 + K)(r2 + K)) = ϕ((r1r2) + K)

= (r1r2) + I

= (r1 + I)(r2 + I)

ϕ(r1 + K)ϕ(r2 + K).
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Thus, ϕ is a surjective ring homomorphism. To complete the
proof it remains to show that kerϕ = I/K. Let r + I ∈ kerϕ.
Then we have 0R + I = ϕ(r + K) = r + I. Thus, r ∈ I and so
r + K ∈ I/K. This gives kerϕ ⊂ I/K. Let i + K ∈ I/K. Then
we have ϕ(i+K) = i+ I = 0R + I, i.e., i+K ∈ kerϕ. This gives
I/K = kerϕ and concludes the proof.


