MATH 333 — MIDTERM EXAM 1 March 9, 2016

NAME: Solutions

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 11 pages including this cover. There are 7 problems.
- 3. Write your name on the top of EVERY sheet of the exam at the start of the exam!
- 4. If you separate pages of this exam and include additional pages, please be sure to staple them in the correct order before turning the exam in.
- 5. You may quote major theorems, but nothing that trivializes a problem.

PROBLEM	POINTS	SCORE
1	10	
2	10	
3	15	
4	20	
5	20	
6	15	
7	10	
TOTAL	100	

1. (10 points) Find the greatest common divisor of 137 and 825. Express the greatest common divisor as a linear combination of 137 and 825.

We use the Euclidean algorithm here:

$$825 = 137(6) + 3$$

$$137 = 3(45) + 2$$

$$3 = 2(1) + 1$$

$$2 = 1(2).$$

Thus, gcd(137, 825) = 1. We substitute to find a linear combination of 137 and 825 that gives 1:

$$1 = 3 + 2(-1)$$

= 3 + (-1)(137 + 3(-45)) = 3(46) + 137(-1)
= 46(825 + 137(-6)) + 137(-1)
= 825(46) + 137(-277).

2. (10 points) Write out addition and multiplication tables for $\mathbb{Z}/5\mathbb{Z}$. (You can write *a* instead of $[a]_5$ as it is clear from context what you mean.) What are the units in $\mathbb{Z}/5\mathbb{Z}$? What are the zero divisors in $\mathbb{Z}/5\mathbb{Z}$?

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3
•	0	1	2	3	4
$\frac{\cdot}{0}$	0	1 0	2	3 0	4 0
$\frac{\cdot}{0}$	0 0 0	1 0 1	2 0 2	3 0 3	4 0 4
$\begin{array}{c} \cdot \\ 0 \\ 1 \\ 2 \end{array}$	0 0 0 0	$\begin{array}{c}1\\0\\1\\2\end{array}$	2 0 2 4	3 0 3 1	$\begin{array}{c} 4\\ 0\\ 4\\ 3 \end{array}$
$\begin{array}{c} \cdot \\ 0 \\ 1 \\ 2 \\ 3 \end{array}$	0 0 0 0 0	1 0 1 2 3	2 0 2 4 1	3 0 3 1 4	$\begin{array}{c} 4\\ 0\\ 4\\ 3\\ 2\end{array}$

From the tables we see there are no zero divisors in $\mathbb{Z}/5\mathbb{Z}$ and the elements 1, 2, 3, 4 are all units.

3. (10 + 5 points)

(a) Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}_{>1}$. Prove that if gcd(a, n) = 1 there is a solution to the equation $ax \equiv 1 \pmod{n}$.

Proof. The fact that gcd(a, n) = 1 implies there exists integers x, y so that ax + ny = 1. Considering this equation modulo n gives

$$ax \equiv 1 \pmod{n},$$

which is what we were trying to prove.

(b) Let a = 137 and n = 825. Find a solution to the equation $137x \equiv 1 \pmod{825}$.

We saw in problem 1 that 825(46) + 137(-277) = 1. Thus, $x = -277 \equiv 558 \pmod{825}$ is a solution.

- 4. (10 points each) Define a function $f : \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ by f(x) = 2x.
 - (a) Is f injective? Be sure to justify your answer.

Proof. The function is not injective. One can never have a function from an infinite set to a finite set be injective. In particular, we see here that $f(0) = [0]_6 = f(3)$ but $0 \neq 3$. \Box

(b) Is f surjective? Be sure to justify your answer.

Proof. To say f is surjective means each element in $\mathbb{Z}/6\mathbb{Z}$ is in the image of f. Suppose that $[1]_6 = [2x]_6$ for some $x \in \mathbb{Z}$. This gives that $[1]_6 = [2]_6[x]_6$. This would give that $[2]_6$ is a unit, which it is not. Another way to see this cannot happen is to observe if there is such an x, then multiplying both sides of the equation by $[3]_6$ we have $[3]_6 = [3]_6[2]_6[x]_6 = [0]_6[x]_6 = [0]_6$, but $[3]_6 \neq [0]_6$ so we have a contradiction.

- 5. (10 points each)
 - (a) Let p be a prime and $a, b \in \mathbb{Z}$. Prove that if $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Let $p \mid ab$, i.e., there exists an integer c so that pc = ab. If $p \mid a$ we are done, so assume $p \nmid a$. Since p is prime this gives gcd(a, p) = 1. Thus, there are integers m, n so that 1 = am + pn. Multiplying both sides of this equation by b we obtain b = abm + bpn. Replacing ab with pc we obtain b = pcm + bpn = p(cm + bn). Thus, $p \mid b$ as desired. \Box

(b) Let p be a prime and $a_1, \ldots, a_n \in \mathbb{Z}$. Prove that if $p \mid a_1 \cdots a_n$ then $p \mid a_j$ for some $1 \leq j \leq n$.

Proof. We prove this by induction on n. The case n = 1 is obvious and the case n = 2 is part (a), so our base case is done. Assume the result is true for some $k \in \mathbb{Z}_{\geq 1}$, i.e., if $p \mid a_1 \dots a_k$ then $p \mid a_j$ for some j with $1 \leq j \leq k$. Now suppose that $p \mid a_1 \dots a_k a_{k+1}$. This can be rewritten as $p \mid (a_1 \dots a_k) \cdot a_{k+1}$. Applying the base case of n = 2 gives that $p \mid a_1 \dots a_k$ or $p \mid a_{k+1}$. If $p \mid a_{k+1}$ we are done, so assume $p \mid a_1 \dots a_k$. We now apply our induction hypothesis to conclude that $p \mid a_j$ for some j with $1 \leq j \leq k+1$. Thus, the result follows by induction.

- 6. (10 + 5 points)
 - (a) Let p be a prime number and $1 \le k \le p-1$ an integer. Recall that $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is an integer. Prove that $\binom{p}{k}_p = [0]_p$. (You are not allowed to quote a homework problem that makes this trivial!)

Proof. We have that $\binom{p}{k} \in \mathbb{Z}$, i.e., $\binom{p}{k} = c$ for some $c \in \mathbb{Z}$. This gives p! = k!(p-k)!c. Our goal is to show that $p \mid c$. Observe that since p is prime and $p \mid ck!(p-k)!$ we have $p \mid c$ or $p \mid k!(p-k)!$. However, since we assume that $1 \leq k \leq p-1$ we have gcd(p,k!) = 1 and similarly gcd(p,(p-k)!) = 1. Thus, $p \mid c$.

(b) Recall that $(x+y)^k = \sum_{j=0}^k \binom{k}{j} x^j y^{k-j}$. Use this to prove the "freshmen's dream" that $([a]_p + [b]_p)^p = [a]_p^p + [b]_p^p$ for all $a, b \in \mathbb{Z}$. (Do you see why a "freshmen" wishes this was true in general?)

Proof. We have

$$([a]_p + [b]_p^p = \sum_{k=0}^p \left[\binom{p}{k} \right]_p [a]_p^k [b]_p^{p-k}$$
$$= \left[\binom{p}{0} \right]_p [b]_p^p + \left[\binom{p}{p} \right]_p [a]_p^p$$
$$= [a]_p^p + [b]_p^p$$

where the second equality follows because in $\mathbb{Z}/p\mathbb{Z}$ we have $[\binom{p}{k}]_p = [0]_p$ for all $1 \le k \le p-1$ by part (a).

This is a dream because many students often forget to "foil" and treat the middle terms as if they do not exist. $\hfill \Box$

7. (10 points) Let $a, b \in \mathbb{Z}$ and let $c \in \mathbb{Z}_{>1}$. Prove that $gcd(ac, bc) = c \cdot gcd(a, b)$.

Proof. Let d = gcd(ac, bc) and e = gcd(a, b). Observe since $e \mid a$ and $e \mid b$, we have $ce \mid ac$ and $ce \mid bc$. Since ce is a common divisor of ac and bc and d is the greatest common divisor, we must have $ce \leq d$. Write e = am + bn for some $m, n \in \mathbb{Z}$. Multiplying this by c we obtain ce = acm + bcn. Since $d \mid ac$ and $d \mid bc$, d divides any linear combination of ac and bc. In particular, $d \mid ce$. Thus, $d \leq ce$. Since we have inequalities in each direction we must have d = ce as claimed.