MATH 333 — MIDTERM EXAM 1 March 9, 2016

NAME: Solutions

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 11 pages including this cover. There are 7 problems.
- 3. Write your name on the top of EVERY sheet of the exam at the start of the exam!
- 4. If you separate pages of this exam and include additional pages, please be sure to staple them in the correct order before turning the exam in.
- 5. You may quote major theorems, but nothing that trivializes a problem.

1. (10 points) Find the greatest common divisor of 137 and 825. Express the greatest common divisor as a linear combination of 137 and 825.

We use the Euclidean algorithm here:

$$
825 = 137(6) + 3
$$

\n
$$
137 = 3(45) + 2
$$

\n
$$
3 = 2(1) + 1
$$

\n
$$
2 = 1(2).
$$

Thus, $gcd(137, 825) = 1$. We substitute to find a linear combination of 137 and 825 that gives 1:

$$
1 = 3 + 2(-1)
$$

= 3 + (-1)(137 + 3(-45)) = 3(46) + 137(-1)
= 46(825 + 137(-6)) + 137(-1)
= 825(46) + 137(-277).

2. (10 points) Write out addition and multiplication tables for $\mathbb{Z}/5\mathbb{Z}$. (You can write a instead of $[a]_5$ as it is clear from context what you mean.) What are the units in $\mathbb{Z}/5\mathbb{Z}$? What are the zero divisors in $\mathbb{Z}/5\mathbb{Z}$?

	$\overline{0}$	1	$\overline{2}$	3	4
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$
	$\mathbf{1}$	$\overline{2}$	3	$\overline{4}$	$\overline{0}$
$\frac{1}{2}$	$\overline{2}$	3	$\overline{4}$	$\overline{0}$	$\mathbf{1}$
	3	$\overline{4}$	$\overline{0}$	$\mathbf 1$	$\overline{2}$
$\overline{4}$	$\overline{4}$	$\overline{0}$	$\mathbf 1$	$\overline{2}$	3
	0	1	$\overline{2}$	3	$\overline{4}$
0	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
	$\overline{0}$	$\mathbf{1}$	$\overline{2}$	3	$\overline{4}$
	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\mathbf 1$	3
$\frac{1}{2}$	$\overline{0}$	3	$\mathbf{1}$	$\overline{4}$	$\overline{2}$

From the tables we see there are no zero divisors in $\mathbb{Z}/5\mathbb{Z}$ and the elements 1, 2, 3, 4 are all units.

3. $(10 + 5 \text{ points})$

(a) Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}_{>1}$. Prove that if $gcd(a, n) = 1$ there is a solution to the equation $ax \equiv 1 \pmod{n}$.

Proof. The fact that $gcd(a, n) = 1$ implies there exists integers x, y so that $ax + ny = 1$. Considering this equation modulo n gives

$$
ax \equiv 1 \pmod{n},
$$

which is what we were trying to prove.

(b) Let $a = 137$ and $n = 825$. Find a solution to the equation $137x \equiv 1 \pmod{825}$.

We saw in problem 1 that $825(46) + 137(-277) = 1$. Thus, $x = -277 \equiv 558 \pmod{825}$ is a solution.

- 4. (10 points each) Define a function $f : \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ by $f(x) = 2x$.
	- (a) Is f injective? Be sure to justify your answer.

Proof. The function is not injective. One can never have a function from an infinite set to a finite set be injective. In particular, we see here that $f(0) = [0]_6 = f(3)$ but $0 \neq 3$. \Box

(b) Is f surjective? Be sure to justify your answer.

Proof. To say f is surjective means each element in $\mathbb{Z}/6\mathbb{Z}$ is in the image of f. Suppose that $[1]_6 = [2x]_6$ for some $x \in \mathbb{Z}$. This gives that $[1]_6 = [2]_6[x]_6$. This would give that $[2]_6$ is a unit, which it is not. Another way to see this cannot happen is to observe if there is such an x , then multiplying both sides of the equation by $[3]_6$ we have $[3]_6 = [3]_6[2]_6[x]_6 = [0]_6[x]_6 = [0]_6$, but $[3]_6 \neq [0]_6$ so we have a contradiction. \Box

- 5. (10 points each)
	- (a) Let p be a prime and $a, b \in \mathbb{Z}$. Prove that if $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Let p | ab, i.e., there exists an integer c so that $pc = ab$. If p | a we are done, so assume $p \nmid a$. Since p is prime this gives $gcd(a, p) = 1$. Thus, there are integers m, n so that $1 = am + pn$. Multiplying both sides of this equation by b we obtain $b = abm + bpn$. Replacing ab with pc we obtain $b = pcm + bpn = p(cm + bn)$. Thus, p | b as desired. $\sqrt{2}$

 \Box

(b) Let p be a prime and $a_1, \ldots, a_n \in \mathbb{Z}$. Prove that if $p \mid a_1 \cdots a_n$ then $p \mid a_j$ for some $1 \leq j \leq n$.

Proof. We prove this by induction on n. The case $n = 1$ is obvious and the case $n = 2$ is part (a), so our base case is done. Assume the result is true for some $k \in \mathbb{Z}_{\geq 1}$, i.e., if $p \mid a_1 \dots a_k$ then $p \mid a_j$ for some j with $1 \leq j \leq k$. Now suppose that $p \mid a_1 \dots a_k a_{k+1}$. This can be rewritten as $p \mid (a_1 \cdots a_k) \cdot a_{k+1}$. Applying the base case of $n = 2$ gives that $p \mid a_1 \cdots a_k$ or $p \mid a_{k+1}$. If $p \mid a_{k+1}$ we are done, so assume $p \mid a_1 \ldots a_k$. We now apply our induction hypothesis to conclude that $p | a_j$ for some j with $1 \le j \le k+1$. Thus, the result follows by induction. \Box

- 6. $(10 + 5 \text{ points})$
	- (a) Let p be a prime number and $1 \leq k \leq p-1$ an integer. Recall that $\binom{p}{k}$ $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is an integer. Prove that $\left[\binom{p}{k}\right]_p = [0]_p$. (You are not allowed to quote a homework problem that makes this trivial!)

Proof. We have that $\binom{p}{k}$ $\binom{p}{k} \in \mathbb{Z}$, i.e., $\binom{p}{k}$ ${k \choose k} = c$ for some $c \in \mathbb{Z}$. This gives $p! = k!(p-k)!c$. Our goal is to show that p | c. Observe that since p is prime and p | ck! $(p-k)!$ we have p | c or p | k! $(p-k)!$. However, since we assume that $1 \leq k \leq p-1$ we have $gcd(p, k!) = 1$ and similarly $gcd(p,(p-k)!)=1$. Thus, $p \mid c$. \Box

(b) Recall that $(x+y)^k = \sum$ k $j=0$ \sqrt{k} j $\int x^j y^{k-j}$. Use this to prove the "freshmen's dream" that $([a]_p + [b]_p)^p = [a]_p^p + [b]_p^p$ for all $a, b \in \mathbb{Z}$. (Do you see why a "freshmen" wishes this was true in general?)

Proof. We have

$$
([a]_p + [b]_p^p = \sum_{k=0}^p \left[\binom{p}{k} \right]_p [a]_p^k [b]_p^{p-k}
$$

=
$$
\left[\binom{p}{0} \right]_p [b]_p^p + \left[\binom{p}{p} \right]_p [a]_p^p
$$

=
$$
[a]_p^p + [b]_p^p
$$

where the second equality follows because in $\mathbb{Z}/p\mathbb{Z}$ we have $\left[\binom{p}{k}\right]_p = [0]_p$ for all $1 \leq k \leq p-1$ by part (a).

This is a dream because many students often forget to "foil" and treat the middle terms as if they do not exist. \Box 7. (10 points) Let $a, b \in \mathbb{Z}$ and let $c \in \mathbb{Z}_{>1}$. Prove that $gcd(ac, bc) = c \cdot gcd(a, b)$.

Proof. Let $d = \gcd(ac, bc)$ and $e = \gcd(a, b)$. Observe since $e \mid a$ and $e \mid b$, we have $ce \mid ac$ and $ce \mid bc$. Since ce is a common divisor of ac and bc and d is the greatest common divisor, we must have $ce \leq d$. Write $e = am + bn$ for some $m, n \in \mathbb{Z}$. Multiplying this by c we obtain $ce = acm + bcn$. Since $d | ac$ and $d | bc$, d divides any linear combination of ac and bc. In particular, $d | ce$. Thus, $d \leq ce$. Since we have inequalities in each direction we must have $d = ce$ as claimed. \Box