
MATH 333 — MIDTERM EXAM 1

March 9, 2016

NAME: Solutions

1. Do not open this exam until you are told to begin.

2. This exam has 11 pages including this cover. There are 7 problems.

3. Write your name on the top of EVERY sheet of the exam at the start of the exam!

4. If you separate pages of this exam and include additional pages, please be sure to staple them in the
correct order before turning the exam in.

5. You may quote major theorems, but nothing that trivializes a problem.

PROBLEM POINTS SCORE

1 10

2 10

3 15

4 20

5 20

6 15

7 10

TOTAL 100
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1. (10 points) Find the greatest common divisor of 137 and 825. Express the greatest common
divisor as a linear combination of 137 and 825.

We use the Euclidean algorithm here:

825 = 137(6) + 3

137 = 3(45) + 2

3 = 2(1) + 1

2 = 1(2).

Thus, gcd(137, 825) = 1. We substitute to find a linear combination of 137 and 825 that
gives 1:

1 = 3 + 2(−1)

= 3 + (−1)(137 + 3(−45)) = 3(46) + 137(−1)

= 46(825 + 137(−6)) + 137(−1)

= 825(46) + 137(−277).

2. (10 points) Write out addition and multiplication tables for Z/5Z. (You can write a instead
of [a]5 as it is clear from context what you mean.) What are the units in Z/5Z? What are
the zero divisors in Z/5Z?

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

From the tables we see there are no zero divisors in Z/5Z and the elements 1, 2, 3, 4 are all
units.
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3. (10 + 5 points)

(a) Let a ∈ Z and n ∈ Z>1. Prove that if gcd(a, n) = 1 there is a solution to the equation
ax ≡ 1 (mod n).

Proof. The fact that gcd(a, n) = 1 implies there exists integers x, y so that ax + ny = 1.
Considering this equation modulo n gives

ax ≡ 1 (mod n),

which is what we were trying to prove.

(b) Let a = 137 and n = 825. Find a solution to the equation 137x ≡ 1 (mod 825).

We saw in problem 1 that 825(46) + 137(−277) = 1. Thus, x = −277 ≡ 558 (mod 825) is a
solution.

4. (10 points each) Define a function f : Z→ Z/6Z by f(x) = 2x.

(a) Is f injective? Be sure to justify your answer.

Proof. The function is not injective. One can never have a function from an infinite set to
a finite set be injective. In particular, we see here that f(0) = [0]6 = f(3) but 0 6= 3.

(b) Is f surjective? Be sure to justify your answer.

Proof. To say f is surjective means each element in Z/6Z is in the image of f . Suppose that
[1]6 = [2x]6 for some x ∈ Z. This gives that [1]6 = [2]6[x]6. This would give that [2]6 is a unit,
which it is not. Another way to see this cannot happen is to observe if there is such an x, then
multiplying both sides of the equation by [3]6 we have [3]6 = [3]6[2]6[x]6 = [0]6[x]6 = [0]6,
but [3]6 6= [0]6 so we have a contradiction.

5. (10 points each)

(a) Let p be a prime and a, b ∈ Z. Prove that if p | ab, then p | a or p | b.

Proof. Let p | ab, i.e., there exists an integer c so that pc = ab. If p | a we are done, so
assume p - a. Since p is prime this gives gcd(a, p) = 1. Thus, there are integers m,n so
that 1 = am + pn. Multiplying both sides of this equation by b we obtain b = abm + bpn.
Replacing ab with pc we obtain b = pcm + bpn = p(cm + bn). Thus, p | b as desired.
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(b) Let p be a prime and a1, . . . , an ∈ Z. Prove that if p | a1 · · · an then p | aj for some
1 ≤ j ≤ n.

Proof. We prove this by induction on n. The case n = 1 is obvious and the case n = 2
is part (a), so our base case is done. Assume the result is true for some k ∈ Z≥1, i.e., if
p | a1 . . . ak then p | aj for some j with 1 ≤ j ≤ k. Now suppose that p | a1 . . . akak+1.
This can be rewritten as p | (a1 · · · ak) · ak+1. Applying the base case of n = 2 gives that
p | a1 · · · ak or p | ak+1. If p | ak+1 we are done, so assume p | a1 . . . ak. We now apply our
induction hypothesis to conclude that p | aj for some j with 1 ≤ j ≤ k + 1. Thus, the result
follows by induction.

6. (10 + 5 points)

(a) Let p be a prime number and 1 ≤ k ≤ p− 1 an integer. Recall that
(
p
k

)
= p!

k!(p−k)! is an

integer. Prove that
[(

p
k

)]
p

= [0]p. (You are not allowed to quote a homework problem

that makes this trivial!)

Proof. We have that
(
p
k

)
∈ Z, i.e.,

(
p
k

)
= c for some c ∈ Z. This gives p! = k!(p− k)!c. Our

goal is to show that p | c. Observe that since p is prime and p | ck!(p − k)! we have p | c
or p | k!(p − k)!. However, since we assume that 1 ≤ k ≤ p − 1 we have gcd(p, k!) = 1 and
similarly gcd(p, (p− k)!) = 1. Thus, p | c.

(b) Recall that (x + y)k =
k∑

j=0

(
k

j

)
xjyk−j . Use this to prove the “freshmen’s dream” that

([a]p + [b]p)
p = [a]pp + [b]pp for all a, b ∈ Z. (Do you see why a “freshmen” wishes this

was true in general?)

Proof. We have

([a]p + [b]pp =

p∑
k=0

[(
p

k

)]
p

[a]kp[b]p−k
p

=

[(
p

0

)]
p

[b]pp +

[(
p

p

)]
p

[a]pp

= [a]pp + [b]pp

where the second equality follows because in Z/pZ we have
[(

p
k

)]
p

= [0]p for all 1 ≤ k ≤ p−1

by part (a).

This is a dream because many students often forget to “foil” and treat the middle terms as
if they do not exist.
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7. (10 points) Let a, b ∈ Z and let c ∈ Z>1. Prove that gcd(ac, bc) = c · gcd(a, b).

Proof. Let d = gcd(ac, bc) and e = gcd(a, b). Observe since e | a and e | b, we have ce | ac
and ce | bc. Since ce is a common divisor of ac and bc and d is the greatest common divisor,
we must have ce ≤ d. Write e = am + bn for some m,n ∈ Z. Multiplying this by c we
obtain ce = acm + bcn. Since d | ac and d | bc, d divides any linear combination of ac and
bc. In particular, d | ce. Thus, d ≤ ce. Since we have inequalities in each direction we must
have d = ce as claimed.


