
MATH 333 — FINAL EXAM

May 23, 2016

NAME: Solutions

1. You do not need to give full proofs; short justifications are fine just like on midterm 2.

(a) Give an example of an integral domain that is not a field.

The ring Z is an integral domain that is not a field. This has been our typical example
from class.

(b) Give an example of a ring R and a subring S where S is not an ideal.

Let R = Q and S = Z. We know Z is a ring and a subset of Q, so it is a subring. It is
not an ideal because for example 1

2 · 1 = 1
2 /∈ Z.

(c) Give an example of a maximal ideal m in a ring R of your choice.

Let p ∈ Z be a prime number. Then pZ is a maximal ideal as was shown in class.

(d) Give an example of a prime ideal p in a ring R so that p is not a maximal ideal.

Let 〈x〉 ⊂ Z[x]. We have Z[x]/〈x〉 ∼= Z, which is an integral domain but not a field.
Thus 〈x〉 is a prime ideal but not a maximal ideal.

2. Let a = 2340 and b = 7007. Find d = gcd(a, b) and express d as a linear combination of a
and b.

We use the Euclidean algorithm here:

7007 = 2(2340) + 2327

2340 = 1(2327) + 13

2327 = 13(179)

Thus, gcd(2340, 7007) = 13. We also have

13 = 2340 + (−1)2327

= 2340 + (−1)(7007 + (−2)(2340))

= 3(2340) + (−1)(7007).
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3. Let R and S be rings. Consider the set I = {(r, 0S) : r ∈ R} ⊂ R× S.

(a) Prove that I is an ideal.

Proof. Observe that 0R×S = (0R, 0S) ∈ I. Let (r1, 0S), (r2, 0S) ∈ I and (r, s) ∈ R× S.
We have (r1, 0S) + (r2, 0S) = (r1 + r2, 0S) ∈ I, (r, s)(r1, 0S) = (rr1, 0S) ∈ I and
(r1, 0S)(r, s) = (r1r, 0S) ∈ I. Thus, I is an ideal.

(b) Show that the map ϕ : R × S → S defined by ϕ((r, s)) = s is a surjective ring
homomorphism.

Proof. Let s ∈ S. We have ϕ((0R, s)) = s so ϕ is surjective.

Let (r1, s1), (r2, s2) ∈ R× S. We have

ϕ((r1, s1) + (r2, s2)) = ϕ((r1 + r2, s1 + s2))

= s1 + s2

= ϕ((r1, s1)) + ϕ((r2, s2))

and

ϕ((r1, s1)(r2, s2)) = ϕ((r1r2, s1s2))

= s1s2

= ϕ((r1, s1))ϕ((r2, s2)).

Thus, ϕ is a surjective ring homomorphism.

(c) Show that (R× S)/I ∼= S.

Proof. Since we have ϕ : R× S → S from part (b) is a surjective ring homomorphism,
if we show kerϕ = I we are done by the first isomorphism theorem. Let (r, 0S) ∈ I.
We have ϕ((r, 0S)) = 0S so (r, 0S) ∈ kerϕ. Thus, I ⊂ kerϕ. Now let (r, s) ∈ kerϕ.
This implies that s = ϕ((r, s)) = 0S , so (r, s) = (r, 0S) ∈ I. Hence, kerϕ ⊂ I and so
I = kerϕ as claimed.

4. Let R = R[x] and consider the subset S = {f ∈ R : f(2) = 0}. Is S a subring of R? Be sure
to justify your answer.

Proof. Observe that 0R is the zero polynomial, which clearly induces the zero function on
R so 0R(s) = 0 and thus 0R ∈ S. Let f, g ∈ S. We have (f + g)(2) = f(2) + g(2) = 0 and
fg(2) = f(2)g(2) = 0 · 0 = 0 so f + g, fg ∈ S. Observe that if f =

∑n
j=0 ajx

j , then −f =∑n
j=0(−aj)xj . From this we see that for any r ∈ R, the polynomial function −f : R → R

is given by (−f)(r) = −f(r) for all r ∈ R. Thus, we have (−f)(2) = −f(2) = −0 = 0 so
−f ∈ S. Hence, S is a subring of R.
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5. Let a, b ∈ Z and n ∈ Z>1. Prove that if gcd(a, n) = 1 then the equation [a]nx = [b]n has a
solution in Z/nZ.

Proof. Assume gcd(a, n) = 1. Then there exists s, t ∈ Z so that as + nt = 1. Multiplying
this by b gives a(bs) + n(bt) = b. Considering this equation in Z/nZ we see [a(bs)]n = [b]n,
i.e., x = [bs]n is a solution to the equation.

6. (a) Let R and S be rings and ϕ : R→ S a ring homomorphism. Prove that if I ⊂ S is an
ideal, then ϕ−1(I) = {r ∈ R : ϕ(r) ∈ I} is an ideal in R.

Proof. We know that 0S ∈ I because I is an ideal. Since ϕ(0R) = 0S , we have
0R ∈ ϕ−1(I). Let r1, r2 ∈ ϕ−1(I) and r ∈ R. We have ϕ(r1), ϕ(r2) ∈ I by definition.
Observe that ϕ(r1 − r2) = ϕ(r1) − ϕ(r2) ∈ I because ϕ(r1), ϕ(r2) ∈ I and I is an
ideal. Since ϕ(r1 − r2) ∈ I, we have r1 − r2 ∈ ϕ−1(I) by definition. Similarly, we
have ϕ(rr1) = ϕ(r)ϕ(r1) ∈ I because ϕ(r1) ∈ I, ϕ(r) ∈ S and I is an ideal. Thus,
rr1 ∈ ϕ−1(I). The same argument shows r1r ∈ ϕ−1(I) and so ϕ−1(I) is an ideal in
R.

(b) Let p be a prime ideal in S. Prove that ϕ−1(p) = {r ∈ R : ϕ(r) ∈ p} is a prime ideal
in S.

Proof. We know from part (a) that ϕ−1(p) is an ideal, so it only remains to show it
is prime. Let ab ∈ ϕ−1(p). This gives that ϕ(a)ϕ(b) = ϕ(ab) ∈ p. Since p is a prime
ideal, we have ϕ(a) ∈ p or ϕ(b) ∈ p, i.e., a ∈ ϕ−1(p) or b ∈ ϕ−1(p). Thus, ϕ−1(p) is a
prime ideal if p is.

7. Let F be a field, f ∈ F [x] a non-constant polynomial, and consider the principal ideal
I = 〈f〉.

(a) Prove that for any coset h + I there is a polynomial r ∈ F [x] with deg r < deg f or
r = 0F so that h + I = r + I.

Proof. Let h + I ∈ F [x]/I. The division algorithm allows us to write h = fq + r with
deg r < deg f or r = 0F . Observe since I = 〈f〉 we have fq ∈ I. Thus, h + I = r + I,
as claimed.

For the rest of this problem consider the case where F = Z/2Z and f =
x2 + x + [1]2.

(b) Does f have any roots in Z/2Z? Is f irreducible? Be sure to justify your answer.

Observe that f([0]2) = [1]2 and f([1]2) = [1]2 so f has no roots in Z/2Z. If f were
reducible it would necessarily be the product of two linear factors, which would imply
f has a root. Thus, f is irreducible.
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(c) Use part (a) to determine all the elements of S = F [x]/〈f〉. (This should not require
any division!) Write out addition and multiplication tables for S.

We have from part (a) that the elements of this quotient ring are precisely [0]2+I, [1]2+
I, x + I, and x + [1]2 + I. We drop the brackets for the tables.

+ 0 + I 1 + I x + I x + 1 + I

0 + I 0 + I 1 + I x + I x + 1 + I
1 + I 1 + I 0 + I x + 1 + I x + I
x + I x + I x + 1 + I 0 + I 1 + I

x + 1 + I x + 1 + I x + I 1 + I 0 + I

· 0 + I 1 + I x + I x + 1 + I

0 + I 0 + I 0 + I 0 + I 0 + I
1 + I 0 + I 1 + I x + I x + 1 + I
x + I 0 + I x + I x + 1 + I 1 + I

x + 1 + I 0 + I x + 1 + I 1 + I x + I

.

where we have used that (x+I)(x+I) = x2+I = x+1+I since x2+x+1+I = 0+I and
−x−1+I = x+1+I since we are working over Z/2Z, (x+I)(x+1+I) = (x2+x+I) =
(x+1+x+I) = 1+I, and (x+1+I)(x+1+I) = (x2+2x+1+I) = (x+1+1+I) = x+I.

(d) Is S isomorphic to Z/4Z or Z/2Z× Z/2Z? Be sure to justify your answer.

One can verify from the tables that S is a field. Note that Z/4Z is not a field as [2]4
is a zero divisor and Z/2Z × Z/2Z is not a field because ([0]2, [1]2) is a zero divisor
as ([0]2, [1]2)([1]2, [0]2) = ([0]2, [0]2). Thus, S cannot be isomorphic to either of these
rings.


