
Math 581 Problem Set 9

1. Let m and n be relatively prime positive integers.
(a) Prove that Z/mnZ ∼= Z/mZ × Z/nZ as RINGS. (Hint: First Isomor-
phism Theorem)

Proof: Define ϕZ → Z/mZ × Z/nZ by ϕ(x) = ([x]m, [x]n). It is clear this
is a homormophism. Let ([a]m, [b]n) ∈ Z/mZ × Z/nZ. Since gcd(m,n) = 1,
there exists s, t ∈ Z so that ms+ nt = 1. Multiply both sides by a− b and
set x = a+ (b− a)ms = b+ (a− b)nt. Then ϕ(x) = ([a]m, [b]n) and so ϕ is
surjective. It is clear that mnZ ⊂ kerϕ. If a ∈ kerϕ, then [a]m = [0]m and
[a]n = [0]n, i.e., m|a and n|a. Thus, mn|a and so a ∈ mnZ. Thus, using the
first isomorphism theorem we have the result. �

(b) Show by example that part (a) may be false if m and n are not assumed
to be relatively prime.

Let m = n = 2. Observe that Z/4Z is a cyclic group of order 4 where
Z/2Z × Z/2Z has no elements of order 4.

(c) Prove that if one has rings R and S and R ∼= S as rings, then R× ∼= S×

as groups under multiplication, i.e., the units in the rings are isomorphic as
groups.

Proof: We already have a homomorphism between them since R ∼= S as
rings, so we only need to show the map is a bijection. However, we showed
last term that u ∈ R is a unit if and only if ϕ(u) is a unit. Thus, ϕ must be
a bijection between R× and S× as well. �

(d) Prove that if R and S are rings, then (R × S)× ∼= R× × S× as groups
under multiplication.

Proof: This just boils down to writing down what each thing is. Note that

(R×S)× = {(a, b) ∈ R×S : there exists (c, d) ∈ R× S so that (a, b)(c, d) = (1, 1)}

and
R× × S× = {(a, b) ∈ R× S : a ∈ R×, b ∈ S×}.

From this the result follows. �
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(e) Use part (d) to conclude that (Z/mnZ)× ∼= (Z/mZ)× × (Z/nZ)×.

Proof: Apply part (d) to conclude that

(Z/mZ)× × (Z/nZ)× ∼= (Z/mZ × Z/nZ)×

and parts (a) and (c) to conclude

(Z/mZ × Z/nZ)× ∼= (Z/mnZ)×.

Combining these we have the result. �

(f) Now let m = p and n = q for some primes p and q. Prove that the order
of the group (Z/pqZ)× is (p− 1)(q − 1).

Proof: We know that (Z/pZ)× has p− 1 elements for any prime p and that
|G×H| = |G||H|. Part (e) now gives the result. �

(g) Prove that if gcd(a, pq) = 1, then a(p−1)(q−1) ≡ 1(mod pq).

Proof: Since gcd(a, pq) = 1 we have that a ∈ (Z/pqZ)×. Since this group
has order (p − 1)(q − 1), we get that a(p−1)(q−1) = eG. Translated into a
congruence statement, this reads a(p−1)(q−1) ≡ 1(mod pq). �

2. Let N be a subgroup of G such that [G : N ] = 2. Prove that N is a
normal subgroup of G.

Proof: Since [G : N ] = 2 there are only two distinct cosets, either right or
left. One of them will be eN (just choose e as the representative for what-
ever coset it is in ) and label the other one gN . So in particular, g /∈ N .
Similarly, we have that the right cosets are Ne and Ng. We know that
G = eN

⊔

gN = Ne
⊔

Ng. It is clear that eN = Ne since they are both
just N as sets. Thus, it must be that gN = Ng. Since all the left cosets are
equal to the right cosets we have that N is normal in G. �

3. Show that every element in Q/Z has finite order. (Recall you showed
last homework that there are infinitely many elements in Q/Z.)

Proof: Let r
s
+Z be an element in Q/Z. Observe that if we add this element

to itself s times we get r+ Z. However, r ∈ Z so we have s( r
s

+ Z) = 0 + Z.
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Thus, every element of Q/Z has finite order. �

4. Let p be an odd prime.
(a) Show that a2 ≡ b2(mod p) if and only if a ≡ b(mod p) or a ≡ −b(mod p).

Proof: Observe that a2 − b2 = (a− b)(a+ b). Thus, if a2 ≡ b2(mod p) then
we know p|(a−b)(a+b). Since p is prime, p|(a−b) or p|(a+b), as claimed. �

(b) Show that ϕ : (Z/pZ)× → (Z/pZ)× defined by ϕ(a) = a2 is a group
homomorphism whose image is a subgroup H of index 2. (Hint: Use part
(a) to determine the kernel of ϕ and use the first isomorphism theorem.)

Proof: Let a, b ∈ (Z/pZ)×. We have ϕ(ab) = (ab)2 = a2b2 = ϕ(a)ϕ(b)
where we have used that (Z/pZ)× is an abelian group. Thus, ϕ is a ho-
momorphism. Let H be the image of ϕ. The first isomorphism theorem
gives us that (Z/pZ)×/ kerϕ ∼= H. Therefore, if we can calculate the order
of kerϕ we will be able to calculate the order of H and hence the index of
H in (Z/pZ)×. Suppose a ∈ kerϕ. Then we have a2 ≡ 1(mod p). Using
part (a) this shows that a = 1 or a = p − 1. Thus, | kerϕ| = 2. Hence,

|H| = (p− 1)/2. Now we see that [(Z/pZ)× : H] = (p−1)
(p−1)

2

= 2 as claimed. �

(c) Define ψ : (Z/pZ)× → {±1} by

ψ(a) =

{

+1, if a is a square in Z/pZ
−1, otherwise.

Prove that ψ is a group homomorphism. (Hint: Consider the quotient group
(Z/pZ)× /H.)

Proof: Note that (Z/pZ)× is an abelian group so all subgroups are normal.
In particular, the H in part (b) is normal. Thus, (Z/pZ)×/H is a group of
order 2. Any group of order 2 must necessarily be isomorphic to the group
{±1}. We proved in class that the natural map G→ G/N given by g 7→ gN
is a surjective homomorphism. Applying this to our situation, we need only
show that ψ is this natural map. Recall that H consists of all of the squares.
Therefore, gH = H if and only if g is a square. Therefore, the map ψ is the
correct map as it takes squares to the identity 1H and nonsquares to the
nonidentity element −1H. Therefore, ψ is a homomorphism. �

(d) Conclude that if neither a nor b is a square in Z/pZ, then their product
ab is a square in Z/pZ. (We used this result last term when showing there
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was a polynomial that was irreducible but reducible modulo every prime p.)

Proof: Suppose neither a or b is a square in Z/pZ. In particular, this means
neither can be 0 so they both lie in (Z/pZ)×. Applying ψ to ab we obtain
ψ(ab) = ψ(a)ψ(b) = (−1)(−1) = 1. Thus, ab must be a square. �

5. If N is a normal subgroup of G and if every element of N and G/N has
finite order, prove that every element of G has finite order.

Proof: Let g ∈ G. We wish to show that there exists N ∈ N so that
gN = eG. Consider the coset gN . Since every element in G/N has finite
order, there exists n ∈ N so that gnN = (gN)n = eN , i.e., gn ∈ N . Now we
use the fact that every element in N has finite order, so there exists m ∈ N

so that (gn)m = eG, i.e., gmn = eG. Thus g has finite order. �

6. Let G = R × R.
(a) Show that N = {(x, y)|x = −y} is a normal subgroup of G.

Proof: Note that (0, 0) ∈ N so N is not empty. Let (a, b) and (c, d) be in N .
Observe that (a, b)+(c, d) = (a+c, b+d) and a+c = −b−d = −(b+d) since
a = −b and c = −d. So N is closed under addition. Note that (−x,−y) ∈ N
if (x, y) is in N since x = −y is equivalent to −x = −(−y). Thus N is a
subgroup. To see it is normal, just observe that R × R is abelian so all
subgroups are normal. �

(b) Describe the quotient group G/N .

Observe first that the coset (0, 0) + N = N is just the line y = −x. Let
(a, b) ∈ R× R. We wish to describe the coset (a, b) +N . If we think of this
in terms of elements, we are just taking each point on the line y = −x and
adding (a, b) to it. Geometrically, this amounts to shifting the line to the
line y = a+b−x. Therefore, the group G/N consists of lines with slope −1.

7. Prove that R×/〈−1, 1〉 ∼= R>0 where R>0 is the group of positive real
numbers.

Proof: Observe that R× and R>0 are both groups under multiplication with
identity e = 1. Define ϕ : R× → R>0 by ϕ(x) = |x|. It is clear that this is a
homomorphism as ϕ(xy) = |xy| = |x||y| = ϕ(x)ϕ(y). To see it is surjective,
let x ∈ R>0. Then |x| = x and so ϕ(x) = x. The first isomorphism theorem
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now gives that R×/ kerϕ ∼= R>0. It is clear that {±1} ⊂ kerϕ since each
has absolute value 1. Since these are the only real numbers with absolute
value 1, we have the reverse containment as well. Thus, R×/{±1} ∼= R>0. �

8. Let G be the set of all matrices of the form




1 a b
0 1 c
0 0 1





where a, b, c ∈ Q.
(a) Show that G is a group under matrix multiplication.

Proof: Note that each matrix in this set has nonzero determinant, so is
a subset of GL2(R). Thus we need only show it is a subgroup to show it
is in fact a group. First observe that the identity matrix is in G so G is

nonempty. Let





1 a b
0 1 c
0 0 1



 and





1 d e
0 1 f
0 0 1



 be in G. Observe that





1 a b
0 1 c
0 0 1









1 d e
0 1 f
0 0 1



 =





1 a+ d e+ af + b
0 1 c+ f
0 0 1



 ∈ G

since Q is closed under addition and multiplication. Thus, G is closed under

matrix multiplication. The inverse of





1 a b
0 1 c
0 0 1



 is given by





1 −a ac− b
0 1 −c
0 0 1





which is clearly still in G. Thus, G is a subgroup of GL2(R) and hence a
group itself. �

(b) Find the center Z(G) of G and show it is isomorphic to Q.

Proof: Recall the center of the group is the set of elements that commute
with everything. Reversing the order of the multiplication above we get





1 d e
0 1 f
0 0 1









1 a b
0 1 c
0 0 1



 =





1 a+ d b+ dc+ e
0 1 c+ f
0 0 1



 .

Therefore, for





1 a b
0 1 c
0 0 1



 to be in Z(G), we must have a = c = 0. There-
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fore,

Z(G) =











1 0 b
0 1 0
0 0 1



 : b ∈ Q







.

Define a map ϕ : Z(G) → Q by





1 0 b
0 1 0
0 0 1



 7→ b. It is not difficult to check

this is an isomorphism. �

(c) Show that G/Z(G) ∼= Q × Q.

Proof: Define ϕ : G→ Q×Q by ϕ









1 a b
0 1 c
0 0 1







 = (a, c). Note that this

map is clearly surjective. To see it is a homomorphism, observe that

ϕ









1 a b
0 1 c
0 0 1









1 d e
0 1 f
0 0 1







 = ϕ









1 a+ d e+ af + b
0 1 c+ f
0 0 1









= (a+ d, c+ f)

= (a, c) + (d, f)

= ϕ









1 a b
0 1 c
0 0 1







 + ϕ









1 d e
0 1 f
0 0 1







 .

It is not difficult to see that kerϕ = Z(G), and so the first isomorphism
theorem gives the result. �


