Math 581 Problem Set 9

1. Let m and n be relatively prime positive integers.
(a) Prove that Z/mnZ = Z/mZ x Z/nZ as RINGS. (Hint: First Isomor-
phism Theorem)

Proof: Define ¢Z — Z/mZ x Z/nZ by ¢(x) = ([&]m, [x]n). It is clear this
is a homormophism. Let ([a]m, [b]n) € Z/mZ x Z/nZ. Since ged(m,n) = 1,
there exists s,t € Z so that ms + nt = 1. Multiply both sides by a — b and
set x =a+ (b—a)ms =b+ (a —b)nt. Then ¢(x) = ([a]m, [b],) and so ¢ is
surjective. It is clear that mnZ C ker ¢. If a € ker ¢, then [a],, = [0],, and
[a], = [0]n, i-e., m|a and n|a. Thus, mn|a and so a € mnZ. Thus, using the
first isomorphism theorem we have the result.

(b) Show by example that part (a) may be false if m and n are not assumed
to be relatively prime.

Let m = n = 2. Observe that Z/4Z is a cyclic group of order 4 where
7./27 x Z/2Z has no elements of order 4.

(c) Prove that if one has rings R and S and R = S as rings, then R* = §*
as groups under multiplication, i.e., the units in the rings are isomorphic as
groups.

Proof: We already have a homomorphism between them since R = S as
rings, so we only need to show the map is a bijection. However, we showed
last term that u € R is a unit if and only if ¢(u) is a unit. Thus, ¢ must be
a bijection between R* and S* as well. B

(d) Prove that if R and S are rings, then (R x §)* = R* x S* as groups
under multiplication.

Proof: This just boils down to writing down what each thing is. Note that
(RxS)* ={(a,b) € RxS : there exists (¢,d) € R x S so that (a,b)(c,d) = (1,1)}

and
R*xS8*={(a,b) e RxS:ae R*,be S™}.

From this the result follows. W



(e) Use part (d) to conclude that (Z/mnZ)™ = (Z/mZ)” x (Z/nZ)™.
Proof: Apply part (d) to conclude that
(Z)mZ)* x (Z)nZ)”* = (Z/mZ x Z/nZ)*
and parts (a) and (c) to conclude
(Z)mZ x Z/nZ)* = (Z/mnZ)*.
Combining these we have the result. H

(f) Now let m = p and n = ¢ for some primes p and ¢. Prove that the order
of the group (Z/pqZ)* is (p — 1)(q — 1).

Proof: We know that (Z/pZ)* has p — 1 elements for any prime p and that
|G x H| = |G||H|. Part (e) now gives the result. B

(g) Prove that if ged(a, pg) = 1, then a®~D@=Y = 1(mod pq).

Proof: Since ged(a,pq) = 1 we have that a € (Z/pqgZ)*. Since this group
has order (p — 1)(q — 1), we get that a»~D@=D = ¢5. Translated into a
congruence statement, this reads aP=D@-1) = 1(modpq). A

2. Let N be a subgroup of G such that [G : N] = 2. Prove that N is a
normal subgroup of G.

Proof: Since [G : N| = 2 there are only two distinct cosets, either right or
left. One of them will be eN (just choose e as the representative for what-
ever coset it is in ) and label the other one gN. So in particular, g ¢ N.
Similarly, we have that the right cosets are Ne and Ng. We know that
G = eN||gN = Ne| |Ng. It is clear that eN = Ne since they are both
just IV as sets. Thus, it must be that g/N = Ng. Since all the left cosets are
equal to the right cosets we have that N is normal in G. B

3. Show that every element in Q/Z has finite order. (Recall you showed
last homework that there are infinitely many elements in Q/Z.)

Proof: Let Z+4Z be an element in Q/Z. Observe that if we add this element
to itself s times we get r + Z. However, r € Z so we have s(% +Z) = 0 + Z.



Thus, every element of Q/Z has finite order. B

4. Let p be an odd prime.
(a) Show that a? = b?(mod p) if and only if a = b(mod p) or a = —b(mod p).

Proof: Observe that a — b? = (a — b)(a +b). Thus, if a® = b*(mod p) then
we know p|(a—b)(a+b). Since p is prime, p|(a—b) or p|(a+b), as claimed. W

(b) Show that ¢ : (Z/pZ)* — (Z/pZ)* defined by ¢(a) = a® is a group
homomorphism whose image is a subgroup H of index 2. (Hint: Use part
(a) to determine the kernel of ¢ and use the first isomorphism theorem.)

Proof: Let a,b € (Z/pZ)*. We have @(ab) = (ab)? = a’b* = p(a)p(b)
where we have used that (Z/pZ)* is an abelian group. Thus, ¢ is a ho-
momorphism. Let H be the image of ¢. The first isomorphism theorem
gives us that (Z/pZ)* | ker p = H. Therefore, if we can calculate the order
of ker ¢ we will be able to calculate the order of H and hence the index of
H in (Z/pZ)*. Suppose a € kerp. Then we have a? = 1(modp). Using
part (a) this shows that @ = 1 or a = p — 1. Thus, |ker¢| = 2. Hence,

|H| = (p—1)/2. Now we see that [(Z/pZ)* : H| = =1) — 2 as claimed. W

(p—1
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(c) Define v : (Z/pZ)* — {&1} by

| 41, ifais asquare in Z/pZ
V(a) = { —1, otherwise.

Prove that 1 is a group homomorphism. (Hint: Consider the quotient group
(Z/pZ)" /H.)

Proof: Note that (Z/pZ)* is an abelian group so all subgroups are normal.
In particular, the H in part (b) is normal. Thus, (Z/pZ)*/H is a group of
order 2. Any group of order 2 must necessarily be isomorphic to the group
{£1}. We proved in class that the natural map G — G/N given by g — gN
is a surjective homomorphism. Applying this to our situation, we need only
show that 1 is this natural map. Recall that H consists of all of the squares.
Therefore, gH = H if and only if g is a square. Therefore, the map 1 is the
correct map as it takes squares to the identity 1H and nonsquares to the
nonidentity element —1H. Therefore, ¢ is a homomorphism. B

(d) Conclude that if neither a nor b is a square in Z/pZ, then their product
ab is a square in Z/pZ. (We used this result last term when showing there



was a polynomial that was irreducible but reducible modulo every prime p.)

Proof: Suppose neither a or b is a square in Z/pZ. In particular, this means
neither can be 0 so they both lie in (Z/pZ)*. Applying ¢ to ab we obtain
P(ab) = ¢¥(a)y(b) = (=1)(—1) = 1. Thus, ab must be a square. Bl

5. If N is a normal subgroup of G and if every element of N and G/N has
finite order, prove that every element of G has finite order.

Proof: Let ¢ € G. We wish to show that there exists N € N so that
g" = eg. Consider the coset gN. Since every element in G'//N has finite
order, there exists n € N so that ¢" N = (¢N)" = eN, i.e., g" € N. Now we
use the fact that every element in IV has finite order, so there exists m € N

so that (¢")™ = eq, i.e., ¢"™" = eqg. Thus ¢ has finite order. B

6. Let G =R xR.
(a) Show that N = {(z,y)|x = —y} is a normal subgroup of G.

Proof: Note that (0,0) € N so N is not empty. Let (a,b) and (c,d) bein N.
Observe that (a,b)+(c,d) = (a+¢,b+d) and a+c¢ = —b—d = —(b+d) since
a = —band ¢ = —d. So N is closed under addition. Note that (—z,—y) € N
if (x,y) is in N since x = —y is equivalent to —z = —(—y). Thus N is a
subgroup. To see it is normal, just observe that R x R is abelian so all
subgroups are normal. ll

(b) Describe the quotient group G/N.

Observe first that the coset (0,0) + N = N is just the line y = —x. Let
(a,b) € R x R. We wish to describe the coset (a,b) + N. If we think of this
in terms of elements, we are just taking each point on the line y = —z and
adding (a,b) to it. Geometrically, this amounts to shifting the line to the
line y = a+b—xz. Therefore, the group G/N consists of lines with slope —1.

7. Prove that R*/(—1,1) = R. where R+ is the group of positive real
numbers.

Proof: Observe that R* and R+ are both groups under multiplication with
identity e = 1. Define ¢ : R* — R+ by ¢(z) = |z|. It is clear that this is a
homomorphism as p(zy) = |zy| = [z[|ly] = ¢(x)e(y). To see it is surjective,
let z € Rog. Then |z| = z and so ¢(x) = z. The first isomorphism theorem



now gives that R*/ker p = R-¢. It is clear that {1} C ker ¢ since each
has absolute value 1. Since these are the only real numbers with absolute
value 1, we have the reverse containment as well. Thus, R*/{£1} ZR-o. B

8. Let GG be the set of all matrices of the form

1 b
0 c
0 1

S~ Q

where a,b,c € Q.
(a) Show that G is a group under matrix multiplication.

Proof: Note that each matrix in this set has nonzero determinant, so is
a subset of GLg(R). Thus we need only show it is a subgroup to show it
is in fact a group. First observe that the identity matrix is in G so G is

1 a b 1 d e
nonempty. Let |0 1 ¢ ] and |0 1 f ] bein G. Observe that
0 0 1 0 0 1
1 a b 1 d e 1 a+d e+af+b
01 ¢ 01 f]=10 1 c+f eG
0 0 1 0 0 1 0 0 1
since Q is closed under addition and multiplication. Thus, G is closed under
1 a b 1 —a ac—0>
matrix multiplication. Theinverseof |0 1 ¢ | isgivenby [0 1 —c
0 0 1 0 0 1

which is clearly still in G. Thus, G is a subgroup of GL2(R) and hence a
group itself.

(b) Find the center Z(G) of G and show it is isomorphic to Q.

Proof: Recall the center of the group is the set of elements that commute
with everything. Reversing the order of the multiplication above we get

1 d e 1 a b 1 a+d b+dc+e

01 fl[o1 el=]0 1 e+ f

0 0 1 0 0 1 0 0 1
1 a b

o
—_

¢ | to bein Z(G), we must have a = ¢ = 0. There-
0 0 1

Therefore, for



fore,

Z(G)

Il
o O =

—_

Define a map ¢ : Z(G) — Q by [0
this is an isomorphism. H

(c) Show that G/Z(G) 2 Q x Q.

Proof: Define p: G — Q x Q by ¢

o~ o O =O

[en)}

b
:bEQ}.

— b. It is not difficult to check

—_

= o o

b

1 a
01 ¢ = (a,c). Note that this
0 0 1

map is clearly surjective. To see it is a homomorphism, observe that

o = 2
= 0

1 b 1 d
© 0 0 1
0 0 0

=~ 0

1 a+d e+af+b
% 0 1 c+f
0 0 1
(a+d,c+ f)
(a,c) +(d, f)
1 a b 1 d e
%) 01 ¢ + ¢ 01 f
0 0 1 0 0 1

It is not difficult to see that ker ¢ = Z(G), and so the first isomorphism

theorem gives the result. W



