
Math 581 Problem Set 8 Solutions

1. Prove that a group G is abelian if and only if the function ϕ : G → G
given by ϕ(g) = g−1 is a homomorphism of groups. In this case, show that
ϕ is an isomorphism.

Proof: First suppose that G is abelian. Let g, h ∈ G. Then we have
ϕ(gh) = (gh)−1 = h−1g−1 = g−1h−1 = ϕ(g)ϕ(h) where we used G is abelian
to conclude h−1g−1 = g−1h−1. Thus, ϕ is a homomorphism.
Now suppose ϕ is a homomorphism. Let g, h ∈ G. Then we have ϕ(g−1h−1) =
ϕ(g−1)ϕ(h−1), i.e., (g−1h−1)−1 = gh. Thus, we have hg = gh. Since g and
h were arbitrary, this shows G is abelian.
To see ϕ is an isomorphism, we just need to show it is bijective. Let g ∈ G.
Then ϕ(g−1) = g and so ϕ is surjective. Suppose ϕ(g) = eG. Then g−1 = eG,
i.e., g = eG. Thus ϕ is injective as well. �

2. Let ϕ : G → H be a homomorphism of groups.
(a) Let G1 be a subgroup of G. Prove that ϕ(G1) is a subgroup of H. In
particular, this shows that ϕ(G) is a subgroup of H.

Proof: Recall that ϕ(eG) = eH . Since G1 is a subgroup, eG ∈ G1 and thus
eH ∈ ϕ(G1) so it is a nonempty set. Let h1, h2 ∈ ϕ(G1). There exists g1 and
g2 in G1 such that ϕ(gi) = hi for i = 1, 2. We have h1h2 = ϕ(g1)ϕ(g2) =
ϕ(g1g2). Thus, h1h2 ∈ ϕ(G1) and so it the set is closed under multiplication.
Finally, recall that ϕ(g−1

1 ) = ϕ(g1)
−1, and so h−1

1 ∈ ϕ(G1). Hence, ϕ(G1) is
a subgroup of H. �

(b) Let H1 be a subgroup of H. Prove that the set ϕ−1(H1) = {g ∈ G :
ϕ(g) ∈ H1} is a subgroup of G. In particular, this shows that ϕ−1(H) is a
subgroup of G.

Proof: Note that since H1 is a subgroup of H we have eH ∈ H1. We know
that ϕ(eG) = eH , so eG ∈ ϕ−1(H1) and thus it is a nonempty set. Let
a, b ∈ ϕ−1(H1), i.e., ϕ(a), ϕ(b) ∈ H1. Since H1 is a subgroup, we know
ϕ(a)ϕ(b) and ϕ(a)−1 are both in H1. Using that ϕ is a homormophism
we get that ϕ(ab) and ϕ(a−1) are both in H1, i.e., ab ∈ ϕ−1(H1) and
a−1 ∈ ϕ−1(H1). Thus, it is a subgroup. �

3. (a) Prove that H =

{(

1 − n −n
n 1 + n

)

| n ∈ Z

}

is a group under matrix
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multiplication.

Proof: Observe that any matrix in H has determinant 1 and hence is an
element of GL2(Z). Since we have seen GL2(Z) is a group, we need only
check that H is a subgroup of this group to see it is a group. It is clear that

H is nonempty as

(

1 0
0 1

)

∈ H. Let

(

1 − m −m
m 1 + m

)

and

(

1 − n −n
n 1 + n

)

be in H. Observe that
(

1 − m −m
m 1 + m

)(

1 − n −n
n 1 + n

)

=

(

1 − (m + n) −(m + n)
m + n 1 + (m + n)

)

∈ H

and

(

1 − n −n
n 1 + n

)

−1

=

(

1 + n n
−n 1 − n

)

=

(

1 − (−n) −(−n)
−n 1 + (−n)

)

∈ H.

Thus H is a subgroup of GL2(Z) and hence is a group itself. �

(b) Prove that H ∼= Z.

Proof: Define ϕ : H → Z by

(

1 − n −n
n 1 + n

)

7→ n. The fact that we have

(

1 − m −m
m 1 + m

)(

1 − n −n
n 1 + n

)

=

(

1 − (m + n) −(m + n)
m + n 1 + (m + n)

)

∈ H

makes it clear that ϕ is in fact a homomorphism. It is also clear that ϕ is

a surjective map. To see it is injective, suppose

(

1 − n −n
n 1 + n

)

maps to 0.

Then we must have n = 0 and so

(

1 − n −n
n 1 + n

)

=

(

1 0
0 1

)

= eH . Thus

the kernel is just the identity element and hence the map is injective. �

4. List all the distinct left cosets of H =

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 1 3

)}

in S3.

What is [S3 : H]? Is H a normal subgroup of S3?
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There are 3 distinct cosets of H, they are

eH =

(

1 2 3
2 1 3

)

H =

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 1 3

)}

(

1 2 3
3 2 1

)

H =

(

1 2 3
2 3 1

)

H =

{(

1 2 3
3 2 1

)

,

(

1 2 3
2 3 1

)}

(

1 2 3
1 3 2

)

H =

(

1 2 3
3 1 2

)

H =

{(

1 2 3
1 3 2

)

,

(

1 2 3
3 1 2

)}

.

Since there are 3 distinct cosets, we know [S3 : H] = 3. To see that H is in
fact not a normal subgroup, just observe that

(

1 2 3
3 2 1

)(

1 2 3
2 1 3

)(

1 2 3
3 2 1

)

=

(

1 2 3
1 3 2

)

/∈ H.

5. This is a series of finite group questions. They are not necessarily related.
(a) A group has fewer then 100 elements and subgroups of orders 10 and
25. What is the order of G?

We know by Lagrange’s theorem that 10 | |G| and 25 | |G|. Thus, the
least common multiple of 10 and 25, namely 50 divides |G|. However, since
|G| < 100, there are no other common multiples of 10 and 25 that could be
|G|. Thus, |G| = 50.

(b) If H and K are subgroups of a finite group G, prove that |H ∩ K| is a
common divisor of |H| and |K|.

Recall we proved in class that H ∩K is a subgroup of H and K. Therefore,
Lagrange’s theorem gives |H ∩ K| | |H| and |H ∩ K| | |K|.

(c) If G is a group with more then 1 element and G has no proper subgroups,
prove that G is isomorphic to Z/pZ for some prime p.

Proof: Let a ∈ G be such that a 6= eG (since we know |G| > 1 we can choose
such an a). Consider the subgroup 〈a〉. Since G has no proper subgroups it
must be that G = 〈a〉. Thus G is a cyclic group and hence isomorphic to
Z/nZ for some positive integer n. However, we proved in class that for any
proper divisor m of n the set 〈am〉 is a proper subgroup of 〈a〉. Since there
can be no such subgroups, there can be no such proper divisor. Thus n is



4

prime and so G ∼= Z/pZ for some prime p. �

(d) If p and q are primes, show that every proper subgroup of a group of
order pq is cyclic.

Proof: By Lagrange’s theorem every proper subgroup must be of order 1,
p, or q. If it is of order 1 then clearly it is just 〈eG〉. Otherwise, it is a group
of prime order and hence is isomorphic to Z/pZ or Z/qZ, both of which are
cyclic. �

6. Let a ∈ G be fixed, and define ϕ : G → G by ϕ(x) = axa−1. Prove that
ϕ is a homomorphism. Under what conditions is ϕ an isomorphism?

Proof: Let g, h ∈ G. Observe that

ϕ(gh) = agha−1

= ageGha−1

= aga−1aha−1

= ϕ(g)ϕ(h).

Thus, ϕ is a homomorphism. To see that ϕ is surjective, observe that
ϕ(a−1ga) = g. Suppose that g ∈ kerϕ. Thus, ϕ(g) = eG, i.e., aga−1 = eG.
However, solving this for g we obtain g = eG. Thus, ϕ is injective. Hence,
ϕ is always an isomorphism. �

7. Show that ϕ : R → C×, ϕ(t) = cos(2πt) + i sin(2πt) is a homomorphism.
What are its kernel and image?

Proof: Observe we can write ϕ(t) = e2πit. Let s, t ∈ R. Then we have

ϕ(s + t) = e2πi(s+t)

= e2πise2πit

= ϕ(s)ϕ(t).

Thus, ϕ is a homomorphism. The image of ϕ is precisely the set of complex
numbers that can be written in the form e2πit for some t ∈ R. In Math
580 we saw this is the circle of radius 1 in the complex plane. The kernel
consists of those t such that e2πit = 1. This is the set of real numbers so
that cos(2πt) = 1 but sin(2πt) = 0, i.e., it is the integers. Thus, kerϕ = Z.
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8. Consider the subgroup N = Z of the additive group Q.
(a) What does it mean for r ≡ s(modN), i.e., for the cosets r+N = s+N?

It means that r − s ∈ Z.

(b) Show that for m,n ∈ Z, one has m + N = n + N .

This is clear since m − n ∈ Z.

(c) 1
2 + N =?

1

2
+ N = {r ∈ Q : r −

1

2
∈ Z} = {0,±

1

2
,±1,±

3

2
,±2,±

5

2
, . . . }

(d) How many distinct cosets are there?

There are infinitely many distinct cosets. For example, the cosets 1
p

+ Z are

all distinct for each prime p. To see this, suppose 1
p

+ Z = 1
q

+ Z where p

and q are primes. This means that 1
p
− 1

q
∈ Z, i.e., q−p

qp
∈ Z. However, since

p 6= q this is not 0 and we have pq > p − q so this is not an integer. Since
there are infinitely many primes, there are infinitely many cosets.

9. Consider the additive group G = Z/3Z × Z/6Z. Set N = 〈(1, 2)〉.
(a) What is |N |? What about [G : N ]?

Note that N = {(1, 2), (2, 4), (3, 6) = (0, 0)}. Thus, |N | = 3. Since |G| = 18,
we have [G : N ] = 18/3 = 6.

(b) Compute the distinct left cosets that comprise G/N .

Note that since we know there are 6 left cosets, once we find 6 distinct cosets
we are done. Any other left coset must then be one of the 6 we’ve found.
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Thus, we have

(0, 0) + N = {(0, 0), (1, 2), (2, 4)}

(1, 0) + N = {(1, 0), (2, 2), (0, 4)}

(2, 0) + N = {(2, 0), (0, 2), (1, 4)}

(0, 1) + N = {(0, 1), (1, 3), (2, 5)}

(0, 3) + N = {(0, 3), (1, 5), (2, 1)}

(0, 5) + N = {(0, 5), (1, 1), (2, 3)}

(c) Prove that N is a normal subgroup of G.

Proof: Since G is an abelian group all the subgroups are normal. �

(d) Write out an addition table for G/N .

Recall that [(a, b) + N ] + [(c, d) + N ] = (a + c, b + d) + N . Using this we
have:

+ (0,0) + N (1,0) + N (2,0) + N (0,1) + N (0,3) + N (0,5) + N

(0,0) + N (0,0) + N (1,0) + N (2,0) + N (0,1) + N (0,3) + N (0,5) + N
(1,0) + N (1,0) + N (2,0) + N (0,0) + N (0,5) + N (0,1) + N (0,3) + N
(2,0) + N (2,0) + N (0,0) + N (1,0) + N (0,3) + N (0,5) + N (0,1) + N
(0,1) + N (0,1) + N (0,5) + N (0,3) + N (0,5) + N (1,0) + N (0,0) + N
(0,3) + N (0,3) + N (0,1) + N (0,5) + N (1,0) + N (0,0) + N (2,0) + N
(0,5) + N (0,5) + N (0,3) + N (0,1) + N (0,0) + N (2,0) + N (1,0) + N

Note we have used for example that (1, 4) + N = (2, 0) +N when filling out
the table. It is important to only have elements of the group G/N in the
table.

(e) What familiar group is G/N?
We stated in class (but did not prove) that any group of order 6 is either
Z/6Z or S3. Since our group has order 6 and is abelian, it must be isomorphic
to Z/6Z.


