Math 581 Problem Set 8 Solutions

1. Prove that a group G is abelian if and only if the function ¢ : G — G
given by ¢(g) = ¢g~! is a homomorphism of groups. In this case, show that
 is an isomorphism.

Proof: First suppose that G is abelian. Let g,h € G. Then we have
©(gh) = (gh)™' = h7 g7t = g7'h~! = ¢(g)¢(h) where we used G is abelian
to conclude h='g~! = g='h~!. Thus, ¢ is a homomorphism.

Now suppose ¢ is a homomorphism. Let g, h € G. Then we have p(¢g~'h™!) =
o(gHe(h™Y), ie., (g7th~ 1=t = gh. Thus, we have hg = gh. Since g and
h were arbitrary, this shows G is abelian.

To see ¢ is an isomorphism, we just need to show it is bijective. Let g € G.
Then ¢(g~!) = g and so ¢ is surjective. Suppose p(g) = eq. Then g~ = eg,
i.e., g = eq. Thus ¢ is injective as well. B

2. Let ¢ : G — H be a homomorphism of groups.
(a) Let G; be a subgroup of G. Prove that ¢(G1) is a subgroup of H. In
particular, this shows that ¢(G) is a subgroup of H.

Proof: Recall that ¢(eg) = ey. Since G is a subgroup, eg € G1 and thus
en € p(G1) so it is a nonempty set. Let hy, ho € ¢(G1). There exists g1 and
g2 in Gy such that ¢(g;) = h; for i = 1,2. We have h1hs = ¢(g1)¢(g2) =
©(g192)- Thus, hihy € p(G1) and so it the set is closed under multiplication.
Finally, recall that ¢(g; ") = p(g1)~!, and so h{' € p(Gy). Hence, p(Gy) is
a subgroup of H. W

(b) Let H; be a subgroup of H. Prove that the set p~1(H;) = {g € G :
©(g) € Hy} is a subgroup of G. In particular, this shows that o1 (H) is a
subgroup of G.

Proof: Note that since Hy is a subgroup of H we have ey € Hi. We know
that ¢(eq) = ey, so eq € ¢ '(Hy) and thus it is a nonempty set. Let
a,b € o Y (Hy), ie., p(a),p(b) € Hy. Since H; is a subgroup, we know
o(a)p(b) and p(a)~! are both in Hy. Using that ¢ is a homormophism
we get that ¢(ab) and ¢(a~!) are both in Hy, i.e., ab € o '(H;) and
a=' € o1 (Hy). Thus, it is a subgroup. W
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3. (a) Prove that H = {(1 -
n 14+n

) | n e Z} is a group under matrix



multiplication.

Proof: Observe that any matrix in H has determinant 1 and hence is an
element of GLy(Z). Since we have seen GLy(Z) is a group, we need only
check that H is a subgroup of this group to see it is a group. It is clear that

. 10 1-m —m 1-n -—n
H is nonempty as <0 1) € H. Let ( . 1+m> and ( . 1—|—n>
be in H. Observe that
1—-m —m 1-n -n 1—(m+n) —(m+n)
= cH
m  1+m n 1+n m+n 1+ (m+n)
and
1-n -n _1_ I1+n n \ [(1—-(-n) —(-n) cH
n 1+n ~\-n 1-n) -n 1+ (—n) ’
Thus H is a subgroup of GL2(Z) and hence is a group itself. B

(b) Prove that H = Z.

—Nn
1+n

l-m —m l-n -n 1—(m+n) —(m+n)
— cH
m  1l+m n 1+n m+n 1+ (m+n)
makes it clear that ¢ is in fact a homomorphism. It is also clear that ¢ is

1-n -—n
1+n

Proof: Define ¢ : H — Z by (1 ; " > — n. The fact that we have

a surjective map. To see it is injective, suppose maps to 0.

Then we must have n = 0 and so L=n —n = L0 = epy. Thus
n 1+n 0 1

the kernel is just the identity element and hence the map is injective. B
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4. List all the distinct left cosets of H = {(1 9 3) , (2 1 3)} in S3.

What is [S3 : H]? Is H a normal subgroup of S5?



There are 3 distinct cosets of H, they are

eH = (;

1 2 3 1
(3 2 1) = (2
1 2 3 1
<1 3 2> "= (3

Since there are 3 distinct cosets, we know [S3 : H] = 3. To see that H is in
fact not a normal subgroup, just observe that

G ai)=033ex

5. This is a series of finite group questions. They are not necessarily related.
(a) A group has fewer then 100 elements and subgroups of orders 10 and
25. What is the order of G?
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We know by Lagrange’s theorem that 10 | |G| and 25 | |G|. Thus, the
least common multiple of 10 and 25, namely 50 divides |G|. However, since
|G| < 100, there are no other common multiples of 10 and 25 that could be
|G|. Thus, |G| = 50.

(b) If H and K are subgroups of a finite group G, prove that |[H N K| is a
common divisor of |H| and |K]|.

Recall we proved in class that H N K is a subgroup of H and K. Therefore,
Lagrange’s theorem gives |H N K| | |H| and |H N K| | |K].

(c) If G is a group with more then 1 element and G has no proper subgroups,
prove that G is isomorphic to Z/pZ for some prime p.

Proof: Let a € G be such that a # eq (since we know |G| > 1 we can choose
such an a). Consider the subgroup (a). Since G has no proper subgroups it
must be that G = (a). Thus G is a cyclic group and hence isomorphic to
Z/nZ for some positive integer n. However, we proved in class that for any
proper divisor m of n the set (a") is a proper subgroup of (a). Since there
can be no such subgroups, there can be no such proper divisor. Thus n is



prime and so G = Z/pZ for some prime p. B

(d) If p and g are primes, show that every proper subgroup of a group of
order pq is cyclic.

Proof: By Lagrange’s theorem every proper subgroup must be of order 1,
p, or q. If it is of order 1 then clearly it is just (eg). Otherwise, it is a group
of prime order and hence is isomorphic to Z/pZ or Z/qZ, both of which are
cyclic. H

6. Let a € G be fixed, and define ¢ : G — G by ¢(z) = aza™'. Prove that
© is a homomorphism. Under what conditions is ¢ an isomorphism?

Proof: Let g,h € G. Observe that

p(gh) = agha™
agecha™!

aga”taha™!
= p(g)p(h).

Thus, ¢ is a homomorphism. To see that ¢ is surjective, observe that
w(a=tga) = g. Suppose that g € ker . Thus, ¢(g9) = eg, i.e., aga™! = eg.
However, solving this for ¢ we obtain g = e. Thus, ¢ is injective. Hence,

 is always an isomorphism. H

7. Show that ¢ : R — C*, (t) = cos(2nt) + isin(27t) is a homomorphism.
What are its kernel and image?

Proof: Observe we can write p(t) = €2™. Let s, € R. Then we have

K,D(S + t) _ 627ri(5+t)
627rise27rz't

= p(s)p(t).

Thus, ¢ is a homomorphism. The image of ¢ is precisely the set of complex
numbers that can be written in the form e?™ for some ¢t € R. In Math
580 we saw this is the circle of radius 1 in the complex plane. The kernel
consists of those ¢ such that e?™ = 1. This is the set of real numbers so
that cos(27t) = 1 but sin(27t) = 0, i.e., it is the integers. Thus, ker p = Z.



8. Consider the subgroup N = Z of the additive group Q.
(a) What does it mean for » = s(mod N), i.e., for the cosets r+ N = s+ N?

It means that r — s € Z.
(b) Show that for m,n € Z, one has m + N =n + N.

This is clear since m —n € Z.

(c) 3 +N=?
1 1 1 3 5
—+ N = r—=—€Z} =40, 4=, +1, =, +£2. +—, ...
2+ {Te@ r 26 } {’ 27 ) 27 Y 27 }

(d) How many distinct cosets are there?

There are infinitely many distinct cosets. For example, the cosets 1—1) + 7, are
all distinct for each prime p. To see this, suppose % +7Z = % + Z where p

and ¢ are primes. This means that % - % €Z,ie., % € 7. However, since
p # ¢ this is not 0 and we have pg > p — ¢ so this is not an integer. Since

there are infinitely many primes, there are infinitely many cosets.

9. Consider the additive group G = Z/37Z x Z/6Z. Set N = ((1,2)).
(a) What is |[N|? What about [G : N]|?

Note that N = {(1,2), (2,4), (3,6) = (0,0)}. Thus, | N| = 3. Since |G| = 18,
we have [G : N] = 18/3 = 6.

(b) Compute the distinct left cosets that comprise G/N.

Note that since we know there are 6 left cosets, once we find 6 distinct cosets
we are done. Any other left coset must then be one of the 6 we’ve found.



Thus, we have

(c) Prove that N is a normal subgroup of G.

Proof: Since G is an abelian group all the subgroups are normal. B

(d) Write out an addition table for G/N.

Recall that [(a,b) + N] + [(¢,d) + N] = (a 4+ ¢,b+ d) + N. Using this we
have:
+ 00) +N (1,0) +N (20) +N (0,1) +N (03)+N (05) + N
(0,0) (0,0) + (1,00 + N (2,00 + N (0,1) + N (0,3) + N (0,5) + N
(1,0) (1,0) + N (20) +N (0,0) +N (05 +N (0,1) +N (0,3) + N
(2,0) + N | (2,0) + (0,00 +N (1,00 + N (0,3) + N (0,5) +N (0,1) + N
(0,1) 01) +N (05) +N (03)+N (05 +N (1,0) + N (0,0) + N
(0,3) 03) +N (01) +N (05 +N (1,0) + N (0,0) + N (20) + N
(0,5 + N | (0,5) + N 0,3) + N (0,1) + N (0,0) + N (20) +N (1,0) + N

Note we have used for example that (1,4) + N =

(2,0) + N when filling out

the table. It is important to only have elements of the group G/N in the

table.

(e) What familiar group is G/N?
We stated in class (but did not prove) that any group of order 6 is either
Z/6Z or Ss. Since our group has order 6 and is abelian, it must be isomorphic

to Z/6Z.



