Math 581 Problem Set 8

Note that I may add another problem or two, but this is enough to get you started for next week.

1. Prove that a group G is abelian if and only if the function $\varphi : G \to G$ given by $\varphi(g) = g^{-1}$ is a homomorphism of groups. In this case, show that φ is an isomorphism.

2. Let $\varphi: G \to H$ be a homomorphism of groups.

(a) Let G_1 be a subgroup of G. Prove that $\varphi(G_1)$ is a subgroup of H. In particular, this shows that $\varphi(G)$ is a subgroup of H.

(b) Let H_1 be a subgroup of H. Prove that the set $\varphi^{-1}(H_1) = \{g \in G : \varphi(g) \in H_1\}$ is a subgroup of G. In particular, this shows that $\varphi^{-1}(H)$ is a subgroup of G.

3. (a) Prove that $H = \left\{ \begin{pmatrix} 1-n & -n \\ n & 1+n \end{pmatrix} \mid n \in \mathbb{Z} \right\}$ is a group under matrix multiplication.

(b) Prove that $H \cong \mathbb{Z}$.

4. List all the distinct left cosets of $H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$ in S_3 . What is $[S_3:H]$? Is H a normal subgroup of S_3 ?

5. This is a series of finite group questions. They are not necessarily related.(a) A group has fewer then 100 elements and subgroups of orders 10 and 25. What is the order of G?

(b) If H and K are subgroups of a finite group G, prove that $|H \cap K|$ is a common divisor of H and K.

(c) If G is a group with more than 1 element and G has no proper subgroups, prove that G is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ for some prime p.

(d) If p and q are primes, show that every proper subgroup of a group of order pq is cyclic.

6. Let $a \in G$ be fixed, and define $\varphi : G \to G$ by $\varphi(x) = axa^{-1}$. Prove that φ is a homomorphism. Under what conditions is φ an isomorphism?

7. Show that $\varphi : \mathbb{R} \to \mathbb{C}^{\times}$, $\varphi(t) = \cos(2\pi t) + i\sin(2\pi t)$ is a homomorphism. What are its kernel and image?

- 8. Consider the subgroup $N = \mathbb{Z}$ of the additive group \mathbb{Q} .
- (a) What does it mean for $r \equiv s \pmod{N}$, i.e., for the cosets r + N = s + N?
- (b) Show that for $m, n \in \mathbb{Z}$, one has m + N = n + N.
- (c) $\frac{1}{2} + N = ?$
- (d) How many distinct cosets are there?
- **9.** Consider the additive group $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$. Set $N = \langle (1,2) \rangle$.
- (a) What is |N|? What about [G:N]?
- (b) Compute the distinct left cosets that comprise G/N.
- (c) Prove that N is a normal subgroup of G.
- (d) Write out an addition table for G/N.
- (e) What familiar group is G/N?