
Math 581 Problem Set 7 Solutions

1. Let f(x) ∈ Q[x] be a polynomial. A ring isomorphism φ : R → R is
called an automorphism.
(a) Let φ : C → C be a ring homomorphism so that φ(a) = a for all a ∈ Q.
Prove that if α ∈ C is a root of f(x), then φ(α) is a root of f(x). In partic-
ular, this shows if φ : K → K is a ring homomorphism with K ⊆ C, then if
α ∈ K is a root of f(x) ∈ Q, then φ(α) must also be a root of f(x).

Proof: Write f(x) = anxn + · · · + a1x + a0 with ai ∈ Q. Since α is a root
of f(x), we have f(α) = 0. Using that φ is an homomorphism and that
φ(a) = a for every a ∈ Q, we have

0 = φ(0)

= φ(anαn + · · · a1α + a0)

= anφ(α)n + · · · a1φ(α) + a0.

Thus, φ(α) is a root of f(x) as well. �

(b) Use part (a) to show that if φ : Q[
√

2] → Q[
√

2] is an isomorphism so
that φ(a) = a for all a ∈ Q (we normally say φ fixes Q), then φ is either the
identity map sending a + b

√
2 to a + b

√
2 or the “conjugation map” sending

a + b
√

2 to a − b
√

2.

Proof: Let φ be such a homomorphism. Recall that elements of Q[
√

2] are
of the form a + b

√
2 for a, b ∈ Q. Thus, since φ is a homomorphism and

fixes Q, we have φ(a + b
√

2) = a + bφ(
√

2). Thus, the map φ is completely
determined by what it does to

√
2. However, by part (a) with f(x) = x2−2,

we see that φ(
√

2) = ±
√

2. Thus we have the result. �

(c) Show that the set of φ : Q[
√

2] → Q[
√

2] that fix Q is a group of order
2.
(Note here that [Q[

√
2] : Q] = 2 and the order of the group of ring homo-

morphisms fixing Q is of order 2! We write Gal(Q[
√

2]/Q) for the group of
automorphisms of Q[

√
2] that fix Q. It is the “Galois group” of the field.)

Proof: If we write e for the identity and φ for the map sending a + b
√

2 to
a − b

√
2, we see that φ2 = e. It is easy to see this is a group of order two

now, in fact, it is isomorphic to Z/2Z. �



2

2. (a) Let G and H be groups. Prove that G × H is a group. If G and H
are finite, then |G × H| = |G||H|.

Proof: Let ? be the group operation on G and ∗ the group operation on H.
Define a group operation · on G × H by (a, b) · (c, d) = (a ? c, b ∗ d). Note
that G×H is clearly closed under this operation since G and H are groups
and hence closed. It also follows we have associativity because we have it
for ? and ∗. Observe that (eG, eH) is the identity element of G × H under
the operation ·. Let (a, b) ∈ G × H. It is then easy to see that (a−1, b−1) is
the inverse of (a, b). Thus, G×H is a group. If G and H are finite, then the
fact that |G×H| = |G||H| follows from the corresponding fact about sets. �

(b) Consider the additive group Z/2Z and the group of units Z[i]× =
{±1,±i}. Write out the operation table for the group Z/2Z × Z[i]×.

∗ (0,1) (0,-1) (0, i) (0 , -i) (1,1) (1,-1) (1,i) (1,-i)

(0,1) (0,1) (0,-1) (0, i) (0 , -i) (1,1) (1,-1) (1,i) (1,-i)
(0,-1) (0,-1) (0,1) (0, -i) (0 , i) (1,-1) (1,1) (1,-i) (1,i)
(0,i) (0,i) (0,-i) (0, -1) (0 , 1) (1,i) (1,-i) (1,-1) (1,1)
(0,-i) (0,-i) (0,i) (0, 1) (0 , -1) (1,-i) (1,i) (1,1) (1,-1)
(1,1) (1,1) (1,-1) (1, i) (1 , -i) (0,1) (0,-1) (0,i) (0,-i)
(1,-1) (1,-1) (1,1) (1, -i) (1 , i) (0,-1) (0,1) (0,-i) (0,i)
(1,i) (1,i) (1,-i) (1, -1) (1 , 1) (0,i) (0,-i) (0,-1) (0,1)
(1,-i) (1,-i) (1,i) (1, 1) (1 , -1) (0,-i) (0,i) (0,1) (0,-1)

3. Decide if the following sets are groups under the given operation ∗.
(a) G = {2x|x ∈ Q}; a ∗ b = ab

This is a group. Let 2x and 2y be in G. Observe that 2x ∗ 2y = 2x+y ∈ G.
Associativity is clear. The identity element is 20 = 1. Finally, the inverse of
2x is 2−x ∈ G.

(b) G = {n ∈ Z|n ≡ 1(mod 5)}; a ∗ b = ab

This is not a group as we do not have inverses. For example, 6 ∈ G but 6−1

is not even in Z, let alone in G.

(c) G = {x ∈ R|x 6= −1}; a ∗ b = ab + a + b

This is a group. It is closed: suppose a ∗ b = −1, i.e., ab + a + b = −1.
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Thus, a(b + 1) = −(1 + b). Since b 6= −1, we have a = −1, a contradic-
tion. Thus G is closed under ∗. The associativity follows: (a ∗ b) ∗ c =
(ab + a + b) ∗ c = abc + ac + bc + ab + a + b + c = a ∗ (b ∗ c). The identity

element is 0 and the inverse of a is − a

1 + a
, which makes sense since a 6= −1.

4. Describe the group of symmetries for a regular pentagon. Find the order
of each element in the group you find. Is your group S5?

The group of symmetries is what is known as a dihedral group. For a reg-
ular n-gon, the group of symmetries is written D2n and has order 2n. The
elements are given by {e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1} where r is a
“rotation” and s is a reflection. It does not matter which rotation or re-
flection you pick, you will get an isomorphic group. Make sure that your
“hands on” way of describing this group matches up with the more general
notion given here.

5. Let G be a group. The center Z(G) of G is defined to be

Z(G) = {a ∈ G : ag = ga for every g ∈ G}.

(a) Prove that Z(G) is a subgroup of G.

Proof: Note that eGa = a = aeG for all a ∈ G, so eG ∈ Z(G). Let
a, b ∈ Z(G). To see ab ∈ Z(G), observe that (ab)g = a(bg) = a(gb) =
(ag)b = (ga)b = g(ab) for all g ∈ G as required. Now let g ∈ G and we
show a−1 ∈ Z(G) if a ∈ Z(G). Observe that since a ∈ Z(G), ag−1 = g−1a.
Taking inverses of both sides we obtain (ag−1) = (g−1a), i.e., ga−1 = a−1g,
as desired. Thus Z(G) is a subgroup of G. �

(b) Find Z(GL2(R)).

Let

(

a b
c d

)

∈ Z(GL2(R)). Since

(

1 1
0 1

)

∈ GL2(R), we can use this to see

that a = d and c = 0. Similarly, we can use the matrix

(

1 0
1 1

)

to get b = 0

as well. Thus,

Z(GL2(R)) =

{(

a 0
0 a

)

|a ∈ R

}

.
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6. Let G = 〈a〉 be a cyclic group of order n.
(a) If H is a subgroup of G, show that |H| divides n.

Proof: We know that H must be a cyclic group, so there exists k ∈ N such
that H = 〈ak〉. We know from class that the order of ak is precisely n/k,
thus, the order of H is n/k, so a divisor of n. �

(b) If k is a positive divisor of n, prove that G has a unique subgroup of
order k.

Proof: The subgroup of order k is the subgroup H = 〈an/k〉. It is clear this
group has order k and is a subgroup. Say mk = n. Now suppose we have
another subgroup of order k, say H. Since H is a subgroup of a cyclic group
it must itself be cyclic, say H = 〈al〉. If we can show that al ∈ 〈am〉, then we
will have H ⊂ 〈am〉 and since they both have k elements they will be equal.
So it remains only to show that m|l. Use the division algorithm to write
l = mq + r with 0 ≤ r < m. Then we have al = amq+r = (am)qar. Raising
both sides to the k we get ark = e. However, r < m so rk < mk = n. This
is a contradiction to the fact that a has order n unless r = 0. Thus, m|l. �

7. (a) Let G be an abelian group of order mn where gcd(m,n) = 1. Assume
G contains an element a of order m and an element b of order n. Prove that
G is cyclic with generator ab.

Proof: Consider the subgroup H = 〈ab〉 inside of G. Since G is abelian we
are able to conclude that (ab)mn = e. To see that G = H we need only show
that the elements ab, (ab)2, . . . , (ab)mn are all distinct. This is equivalent
to showing that (ab)j 6= e for 0 < j < mn. Suppose there exists a j with
0 < j < mn and (ab)j = e. In particular, we have aj = b−j. Observe that
we have e = b−jn = (b−j)n = (aj)n, i.e., ajn = e. Thus, it must be that
m|jn. However, since gcd(m,n) = 1, it must in fact be that m|j. A similar
argument gives n|j. Hence, the least common multiple of m and n, which
in this case is mn, must divide j. This is a contradiction to 0 < j < mn,
thus we have G = H as claimed. �

(b) Prove that Z/mZ × Z/nZ is cyclic if and only if gcd(m,n) = 1.

Proof: If gcd(m,n) = 1, then we apply part (a) with G = Z/mZ and
H = Z/nZ to obtain the result. Now suppose Z/mZ × Z/nZ is cyclic and
gcd(m,n) = d. Let (a, b) be a generator of this group (in fact, one could
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take (1, 1).) Observe then that mn
d (1, 1) =

(

(n
d m, m

d n
)

= (0, 0). However,
if d > 1 then we will end up with only mn

d elements in G, a contradiction.
Thus it must be that d = 1. �

8. Let G be an abelian group and n a fixed positive integer.
(a) Prove that H = {a ∈ G|an = e} is a subgroup of G.

Proof: Note that H is nonempty because e ∈ H. Suppose a, b ∈ H. Using
that G is abelian we have (ab)n = anbn = e · e = e, so ab ∈ H. Similarly, if
a ∈ H, then (a−1)n = a−n = (an)−1 = e−1 = e. Thus, H is a subgroup of
G. �

(b) Show that part (a) may be false if we do not assume G is abelian. You
may want to look at the group S3 to see this.

Consider the group S3 and n = 2. Then H =

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 1 3

)

,

(

1 2 3
3 2 1

)

,

(

1 2 3
1 3 2

)}

.

However,

(

1 2 3
2 1 3

)

◦
(

1 2 3
3 2 1

)

=

(

1 2 3
3 1 2

)

, which is not in H.


