Math 581 Problem Set 7

1. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial. A ring isomorphism $\phi : R \to R$ is called an automorphism.

(a) Let $\phi : \mathbb{C} \to \mathbb{C}$ be a ring homomorphism so that $\phi(a) = a$ for all $a \in \mathbb{Q}$. Prove that if $\alpha \in \mathbb{C}$ is a root of f(x), then $\phi(\alpha)$ is a root of f(x). In particular, this shows if $\phi : K \to K$ is a ring homomorphism with $K \subseteq \mathbb{C}$, then if $\alpha \in K$ is a root of $f(x) \in \mathbb{Q}$, then $\phi(\alpha)$ must also be a root of f(x).

(b) Use part (a) to show that if $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]$ is an isomorphism so that $\phi(a) = a$ for all $a \in \mathbb{Q}$ (we normally say ϕ fixes \mathbb{Q}), then ϕ is either the identity map sending $a + b\sqrt{2}$ to $a + b\sqrt{2}$ or the "conjugation map" sending $a + b\sqrt{2}$ to $a - b\sqrt{2}$.

(c) Show that the set of $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]$ that fix \mathbb{Q} is a group of order 2.

(Note here that $[\mathbb{Q}[\sqrt{2}] : \mathbb{Q}] = 2$ and the order of the group of ring homomorphisms fixing \mathbb{Q} is of order 2! We write $\operatorname{Gal}(\mathbb{Q}[\sqrt{2}]/\mathbb{Q})$ for the group of automorphisms of $\mathbb{Q}[\sqrt{2}]$ that fix \mathbb{Q} . It is the "Galois group" of the field.)

2. (a) Let G and H be groups. Prove that $G \times H$ is a group. If G and H are finite, then $|G \times H| = |G||H|$.

(b) Consider the additive group $\mathbb{Z}/2\mathbb{Z}$ and the group of units $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$. Write out the operation table for the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}[i]^{\times}$.

3. Decide if the following sets are groups under the given operation *. (a) $G = \{2^x | x \in \mathbb{Q}\}; a * b = ab$ (b) $G = \{n \in \mathbb{Z} | n \equiv 1 \pmod{5}\}; a * b = ab$ (c) $G = \{x \in \mathbb{R} | x \neq -1\}; a * b = ab + a + b$

4. Describe the group of symmetries for a regular pentagon. Find the order of each element in the group you find. Is your group S_5 ?

5. Let G be a group. The center Z(G) of G is defined to be

$$Z(G) = \{ a \in G : ag = ga \text{ for every } g \in G \}.$$

(a) Prove that Z(G) is a subgroup of G.

(b) Find $Z(\operatorname{GL}_2(\mathbb{R}))$.

6. Let $G = \langle a \rangle$ be a cyclic group of order *n*.

- (a) If H is a subgroup of G, show that |H| divides n.
- (b) If k is a positive divisor of n, prove that G has a unique subgroup of

order k.

7. (a) Let G be an abelian group of order mn where gcd(m, n) = 1. Assume G contains an element a of order m and an element b of order n. Prove that G is cyclic with generator ab.

(b) Prove that $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is cyclic if and only if gcd(m, n) = 1.

8. Let G be an abelian group and n a fixed positive integer.

(a) Prove that $H = \{a \in G | a^n = e\}$ is a subgroup of G.

(b) Show that part (a) may be false if we do not assume G is abelian. You may want to look at the group S_3 to see this.