
Math 581 Problem Set 6 Solutions

1. Let F ⊆ K be a finite field extension. Prove that if [K : F ] = 1, then
K = F .

Proof: Let v ∈ K be a basis of K over F . Let c be any element of K. There
exists αc ∈ F so that c = αcv. In particular, 1 = α1v for some α1 ∈ F .
However, F being a field implies v = α−1 ∈ F . This then shows that c ∈ F
for any c ∈ K since it is the product of two things in F . Thus, K = F . �

2. Recall we showed that an angle θ is constructible if and only if cos θ and
sin θ are both constructible.
(a) Show that if angles θ1 and θ2 are constructible, then so are angles θ1+θ2

and θ1 − θ2.

Proof: The fact that θ1 and θ2 are constructible means that cos θi and sin θi

are both constructible for i = 1, 2. We know that the set of constructible
numbers forms a field, so we can add and multiple the values to get con-
structible numbers. The fact that θ1 + θ2 and θ1 − θ2 are constructible then
follows from the trig identities:

sin(θ1 ± θ2) = sin θ1 cos θ2 ± cos θ1 sin θ2

cos(θ1 ± θ2) = cos θ1 cos θ1 ∓ sin θ1 sin θ2

since everything on the right is now constructible. �

(b) Prove that if the regular mn-gon is constructible, i.e., one can construct
an angle of 2π

mn
, then the regular m- and n-gons are constructible as well.

Proof: The point to observe here is that 2π
m

= 2π
mn

+ · · · + 2π
mn

where there
are n-copies of 2π

mn
in the sum. Now use induction and part (a) to conclude

that 2π
m

is constructible. Similarly for 2π
n

. �

(c) Prove that if gcd(m,n) = 1 and the regular m- and n-gons are both
constructible, then the regular mn-gon is constructible.

Proof: The fact that gcd(m,n) = 1 implies that there exists a, b ∈ Z so



2

that am + bn = 1. Now we have

2π

mn
= 1 ·

(

2π

mn

)

= (am + bn) ·
(

2π

mn

)

= a

(

2π

n

)

+ b

(

2π

m

)

.

Now apply induction and part (a) to conclude that 2π
mn

is constructible. �

(d) Show it is possible to trisect the angle 2π
5

and construct a regular 15-gon.

Proof: Observe that the 3-gon is constructible because 2π
3

is constructible

since cos 2π
3

= −1

2
and sin 2π

3
=

√

3

2
. We know the constructible numbers

form a field and that we can take square roots of constructible numbers to
get another constructible number, so it is clear these are both constructible.
If we can show that 2π

5
is constructible, we will have that a 15-gon is con-

structible by part (c). Observe that cos 2π
5

= 1

4
(−1 +

√
5) and sin 2π

5
=

1

2

√

1

2
(5 +

√
5). These are both formed by taking square roots and field op-

erations from constructible numbers, so are constructible. �

3. Recall deMoivre’s theorem from section 2.3: For any integer n one has
(cos θ + i sin θ)n = cos nθ + i sinnθ.
(a) Use deMoivre’s theorem to find a formula for sin 7θ that does not con-
tain any cos θ’s.

First observe that the imaginary part of deMoivre’s formula gives

sin 7θ = − sin7 θ + 21 cos2 θ sin5 θ − 35 cos4 θ sin3 θ + 7 cos6 θ sin θ.

Using that cos2 θ = 1 − sin2 θ we obtain

sin 7θ = −64 sin7 θ + 112 sin5 θ − 56 sin3 θ + 7 sin θ.

(b) Plug in θ = 2π
7

to find a polynomial in Z[x] that has sin
(

2π
7

)

as a root.

Plugging in θ = 2π
7

we obtain that sin
(

2π
7

)

is a root of the polynomial

f(x) = 64x7 − 112x5 + 56x3 − 7x.
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Thus, sin
(

2π
7

)

is a root of the polynomial

g(x) = 64x6 − 112x4 + 56x2 − 7.

(c) Prove that the polynomial you found in part (b) is irreducible in Z[x].

Proof: We see that g(x) is irreducible by using Eisenstein with p = 7. �

(d) Prove that the regular heptagon (7-gon) is not constructible.

Proof: Using part (c) we see that
[

Q
[

sin
(

2π
7

)]

: Q
]

= 6. Since this is not a
power of 2, it must be that sin

(

2π
7

)

is not constructible. Hence, we cannot
construct a regular 7-gon. �

4. (a) Show that x4 + x + 1 is irreducible in (Z/2Z) [x].

Proof: Note that this has no roots in Z/2Z as observed by plugging in 0
and 1. To show it is irreducible we need to use the method of undetermined
coefficients to show it does not factor into quadratics. Since the only possi-
bilities for coefficients are 0 and 1 we immediately see the quadratics must
be of the form

x4 + x + 1 = (x2 + ax + 1)(x2 + bx + 1).

This gives that b + c = 0 for the coefficient of x3 and b + c = 1 for the
coefficient of x, a contradiction. Thus x4 + x + 1 is irreducible. �

(b) Use part (a) to construct a finite field F24 of order 16.

Recall F2 = Z/2Z. Note that since x4+x+1 is irreducible, F2[x]/〈x4+x+1〉
is a field. It has a basis of {1, x, x2, x3}. Thus, elements in this field are of
the form a0 + a1x + a2x

2 + a3x
3 with ai ∈ F2. Hence, there are 24 elements

in this field.
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(c) Draw a diagram that shows all the subfields of F24 .

F16

2

||
||

||
||

4F4

2 BB
BB

BB
BB

F2

5. Let F be a field of characteristic p.
(a) Prove that for every positive integer n, one has

(a + b)pn

= apn

+ bpn

for all a, b ∈ F . (Hint: use induction on n.)

Proof: The case of n = 1 has been proven in previous homework sets for
Z/pZ by observing all the middle binomial coefficients are divisible by p.
The same argument gives the result for n = 1 in this case. Now assume that
for some k ∈ N we have

(a + b)pk

= apk

+ bpk

for all a, b ∈ F . Raising both sides to the p we have

(a + b)pk+1

= (apk

+ bpk

)p

= apk+1

+ bpk+1

where the last equality follows from the n = 1 case. Thus, we have the result
for all n by induction. �

(b) Now assume that in addition F is finite. Prove that the map φ : F → F
given by φ(a) = ap is an isomorphism. Use this to conclude that every ele-
ment of F has a pth root in F .

Proof: First we prove that φ is a homomorphism. Let a, b ∈ F . Then we
have φ(ab) = (ab)p = apbp = φ(a)φ(b) where we have used that elements
commute since this is a field. Now, φ(a+b) = (a+b)p = ap+bp = φ(a)+φ(b)
by part (a). It is also clear that φ(1F ) = 1F . Thus, φ is a homomorphism.
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The fact that φ is injective is easy to show. Suppose φ(a) = 0F . Then
ap = 0F which implies a = 0F since F is necessarily an integral domain.
Thus ker φ = 〈0F 〉 and so φ is injective. Now we use that F is a finite set
and Homework set 1 problem 2 to conclude φ is also surjective.
Let a ∈ F . Then there exists a b ∈ F so that φ(b) = a since φ is surjective,
i.e., bp = a. Thus every element in F is a pth root. Note that by looking at
φ composed with itself m times for any m ∈ N we get every element is a pm

power. �

(c) Let K be a finite field of characteristic p with F ⊂ K and m a positive
integer. Set L = {a ∈ K : apm ∈ F}. Prove that L is a subfield of K that
contains F .

Proof: There are two things to prove here, that L contains F and that L is
a subfield of K. It is clear that F ⊆ L as any element that is in F satisfies
that its pm power is still in F as F is closed under multiplication. To see L
is a subfield we need to show it is closed under addition, multiplication, and
inversion. Let a, b ∈ L. From part (a) we have that (a + b)pm

= apm

+ bpm

.
Since a, b ∈ L, we have that apm

and bpm

are both in F , hence there sum
is as well. Thus (a + b)pm ∈ F and hence a + b ∈ L. To see multiplication,
(ab)pm

= apm

bpm ∈ F and so ab ∈ L. Let a ∈ L, i.e., apm ∈ F . Since
L ⊆ K we know that there exists b ∈ K such that ab = 1. Using that
apm

bpm

= (ab)pm

= 1 we see that bpm

is necessarily the inverse of apm

in F
since F is a field, apm ∈ F and inverses are unique. Thus, bpm ∈ F and thus
b ∈ L. Thus, L is a subfield of K. �

(d) Prove L = F . (Hint: Think vector spaces. If {v1, . . . , vn} is a basis
of L over F , use parts (a) and (b) to prove that {vpm

1
, . . . , vpm

n } is linearly
independent over F , which implies n = 1.)

Proof: Let {v1, . . . , vn} be a basis of L over F . Suppose that {vpm

1
, . . . , vpm

n }
is linearly dependent, i.e., there exists a1, . . . , an in F not all zero so that

a1v
pm

1
+ · · · + anvpm

n = 0.

Part (b) gives that for each ai ∈ F there exists an αi ∈ F so that a = αpm

i .
Thus, we have

αpm

1
vpm

1
+ · · · + αpm

n vpm

n = 0.
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Now we apply part (a) to conclude that

0 = αpm

1
vpm

1
+ · · · + αpm

n vpm

n

= (α1v1 + · · · + αnvn)p
m

.

Since L is a field, we have that this implies

α1v1 + · · · + αnvn = 0.

But this contradicts the fact that {v1, . . . , vn} is a linearly independent set.
Thus it must be that {vpm

1
, . . . , vpm

n } is a linearly independent set as well.

However, we know that vpm

i ∈ F for 1 ≤ i ≤ n by the definition of L. Thus,
it must be that n = 1 and L = F . �

6. Write a critique of the “proof” given in the following article. Please use
only material the author provides in the article to critique the proof.

http://www.washingtonpost.com/wp-
dyn/content/blog/2006/02/15/BL2006021501989.html


