Math 581 Problem Set 6

1. Let $F \subseteq K$ be a finite field extension. Prove that if [K : F] = 1, then K = F.

2. Recall we showed that an angle θ is constructible if and only if $\cos \theta$ and $\sin \theta$ are both constructible.

(a) Show that if angles θ_1 and θ_2 are constructible, then so are angles $\theta_1 + \theta_2$ and $\theta_1 - \theta_2$.

(b) Prove that if the regular mn-gon is constructible, i.e., one can construct an angle of $\frac{2\pi}{mn}$, then the regular m- and n-gons are constructible as well.

(c) Prove that if gcd(m, n) = 1 and the regular *m*- and *n*-gons are both constructible, then the regular *mn*-gon is constructible.

(d) Show it is possible to trisect the angle $\frac{2\pi}{5}$ and construct a regular 15-gon.

3. Recall deMoivre's theorem from section 2.3: For any integer n one has $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.

(a) Use deMoivre's theorem to find a formula for $\sin 7\theta$ that does not contain any $\cos \theta$'s.

(b) Plug in $\theta = \frac{2\pi}{7}$ to find a polynomial in $\mathbb{Z}[x]$ that has $\sin\left(\frac{2\pi}{7}\right)$ as a root.

(c) Prove that the polynomial you found in part (b) is irreducible in $\mathbb{Z}[x]$.

(d) Prove that the regular heptagon (7-gon) is not constructible.

4. (a) Show that x⁴ + x + 1 is irreducible in (Z/2Z) [x].
(b) Use part (a) to construct a finite field F₂₄ of order 16.
(c) Draw a diagram that shows all the subfields of F₂₄.

5. Let F be a field of characteristic p.

(a) Prove that for every positive integer n, one has

$$(a+b)^{p^n} = a^{p^n} + b^{p^n}$$

for all $a, b \in F$. (Hint: use induction on n.)

(b) Now assume that in addition F is finite. Prove that the map $\phi: F \to F$ given by $\phi(a) = a^p$ is an isomorphism. Use this to conclude that every element of F has a p^{th} root in F.

(c) Let K be a finite field of characteristic p with $F \subset K$ and m a positive integer. Set $L = \{a \in K : a^{p^m} \in F\}$. Prove that L is a subfield of K that contains F.

(d) Prove L = F. (Hint: Think vector spaces. If $\{v_1, \ldots, v_n\}$ is a basis of L over F, use parts (a) and (b) to prove that $\{v_1^{p^m}, \ldots, v_n^{p^m}\}$ is linearly

independent over F, which implies n = 1.)

6. Write a critique of the "proof" given in the following article. Please use only material the author provides in the article to critique the proof.

 $\label{eq:http://www.washingtonpost.com/wp-dyn/content/blog/2006/02/15/BL2006021501989.html$