
Math 581 Problem Set 5 Solutions

1. Show that the set {
√

2,
√

2 + i,
√

3 − i} is linearly independent over Q.

Proof: Suppose there exists a0, a1, and a2 in Q so that

a0

√
2 + a1(

√
2 + i) + a2(

√
3 − i) = 0.

Then we see immediately that we must have a1 − a2 = 0 as these are the
coefficients of the complex part of this equation. Thus, a1 = a2. Using this
and looking at the real part of the equation we have

(a0 + a1)
√

2 + a1

√
3 = 0.

This is impossible. (For example, square both sides and you’d get
√

6 ∈ Q.)
Thus it must be that this set is linearly independent over Q. �

2. Let F ⊆ K be fields with [K : F ] = p for some prime number p.
(a) Show that there is no field E so that F ( E ( K.

Proof: Suppose there is such a field E. Using Proposition 1.5 we have
p = [K : F ] = [K : E][E : F ]. This implies that either [K : E] = 1 or
[E : F ] = 1, i.e., that either K = E or E = F , a contradiction. Thus, no
such field can exist. �

(b) Use part (a) to conclude there is no field F so that R ( F ( C.

Proof: Since [C : R] = 2 and 2 is prime, we immediately see from part (a)
that there can be no field between R and C. �

(c) Let α ∈ K with α /∈ F . Prove that K = F [α].

Proof: Using part (a) we see that F [α] = F or F [α] = K. Since α /∈ F ,
F [α] 6= F . Thus we have the result. �

(d) Use part (c) to conclude that C = R[i].

Proof: Since i /∈ R, we must have C = R[i] by part (c). �

3. Let V be a vector space over Q. Prove that if v, w ∈ V are linearly
independent, then so are v + w, 2v − w.
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Proof: Suppose there exists a, b ∈ Q so that

a(v + w) + b(2v − w) = 0.

In particular, we have that (a+2b)v +(a− b)w = 0. Using that v and w are
linearly independent over Q we have that a + 2b = 0 and a − b = 0. Thus,
a = b and b + 2b = 0, i.e., b = 0 and a = 0. Thus, the set v + w and 2v − w
is a linearly independent set over Q. �

4. Prove that {v1, . . . , vk} is a basis for V if and only if every vector in V
can be written uniquely as a linear combination of v1, . . . , vk.

5. Give a basis and the degree of the field extension in each of the following
cases:
(a) V = Q[ω7] over Q where ω7 is a seventh root of unity

A basis is given by {1, ω7, ω
2

7
, ω3

7
, ω4

7
, ω5

7
} and the degree of the extension is 6.

(b) V = Q[ω6] over Q[i] where ω6 is a sixth root of unity

This problem is actually a mistake as written. The field Q[ω6] is the field
Q[i

√
3] and is not an extension of Q[i]! The problem was changed to read

(for extra credit points) find a basis of Q[i,
√

3] over Q[ω6] and of course to
prove it is a basis.
We begin by looking at Q[

√
3, i] over Q as this is a bit different then the

field extensions we have encountered thus far. Observe that we have the
following diagram of fields:

Q[
√

3, i]

n

HH
HH

HH
HH

H

m

uuuuuuuuu

Q[
√

3]

2
JJ

JJ
JJ

JJ
JJ

J
Q[i]

2

vvvvvvvvvv

Q

We would like to show that m = n = 2 to show that [Q[
√

3, i] : Q] = 4. To
see this, observe that x2 + 1 is still an irreducible polynomial over Q[

√
3] as

±i /∈ Q[
√

3]. Thus, m = 2. Incidentally, this also proves n = 2 and so x2 −3
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is irreducible over Q[i] as well. So we now know that a basis of Q[
√

3, i] over
Q must contain 4 elements. We claim that {1, i,

√
3, i

√
3} is a basis. Since

we know the dimension is 4, we only need to show these vectors are linearly
independent or span the space to conclude they are a basis. We choose to
show linear independence. Suppose there exists a, b, c, d ∈ Q so that

a + bi + c
√

3 + di
√

3 = 0.

Rearranging this we get (a+ c
√

3)+ i(b+d
√

3) = 0. Now we use that C is a
2-dimensional vector space over R with basis {1, i} to conclude that we must
have a + c

√
3 = 0 = b + d

√
3. Finally, use that Q[

√
3] is a 2-dimensional

vector space over Q with basis {1,
√

3} to conclude that a = c = 0 and
b = d = 0. Thus, we obtain linear independence of the set {1, i,

√
3, i

√
3} as

desired.
Recall that Q[i

√
3] = {a + bi

√
3 : a, b ∈ Q}. When we consider Q[

√
3, i] as

a vector space over Q[i
√

3], our constants will be of the form a + bi
√

3
for a, b ∈ Q. We claim {1, i} is a basis of Q[

√
3, i] over Q[i

√
3]. Let

a + bi + c
√

3 + di
√

3 ∈ Q[
√

3, i] with a, b, c, d ∈ Q. (We use here that
{1, i,

√
3, i

√
3} is a basis of Q[

√
3, i] over Q!) To see that {1, i} spans, ob-

serve that (a + di
√

3) + (b − ci
√

3)i = a + bi + c
√

3 + di
√

3 and a + di
√

3,
b − ci

√
3 are in Q[i

√
3]. To prove linear independence, suppose there exists

α = a+bi
√

3 and β = c+di
√

3 in Q[i
√

3] so that α+βi = 0. (Note here that
you are using constants in the field the vector space is defined over, in this
case Q[i

√
3]!) So we have a + bi

√
3 + ci − d

√
3 = 0. Now just use the linear

independence of {1, i,
√

3, i
√

3} over Q to conclude that a = b = c = d = 0
and we are done. Thus {1, i} is a basis of Q[

√
3, i] over Q[i

√
3] and so the

dimension is 2. Note that a choice of basis is NOT unique, so it is quite
possible to choose a different basis and still be correct. �

(c) V = C over R

This is a degree 2 extension with basis {1, i}.

(d) V = (Z/7Z) [x]/〈x3 − 3〉 over Z/7Z.

The first thing one needs to observe is that x3 − 3 is irreducible over
(Z/7Z) [x] as one sees by showing j3 6= 3 for all j ∈ Z/7Z. So this is
actually a field. A basis is then given by {1, x, x2} and the degree of the
extension is 3. Note this gives a field with 73 elements.
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6. Let f(x) = 2x15 − 49x12 + 21x7 + 70x2 + 35. Let K be an extension field
of Q with [K : Q] = 32. Show K does not contain any roots of f(x).

Proof: First we observe that f(x) is irreducible. This follows from Eisen-
stein’s criterion with p = 7. Suppose K contains a root α of f(x). We
have that Q ( Q[α] ⊂ K. However, we know from Lemma 1.6 that
[Q[α] : Q] = 15. This would imply using Proposition 1.5 that 15|32, clearly
a contradiction. Thus K can contain no roots of f(x). �

7. Let p be a prime number. Show that Q[ 21
√

p] = Q[ 3
√

p, 7
√

p].

Proof: First observe that Q[ 3
√

p, 7
√

p] ⊆ Q[ 21
√

p] since ( 21
√

p)7 = 3
√

p and
( 21
√

p)3 = 7
√

p. Since f(x) = x21 − p is irreducible (see problem 8(a)), we
know that [Q[ 21

√
p] : Q] = 21. If we can show that [Q[ 3

√
p, 7

√
p] : Q] = 21,

then we will have that Q[ 21
√

p] = Q[ 3
√

p, 7
√

p] by using Proposition 1.5. We
have the following diagram of fields:

Q[ 3
√

p, 7
√

p]

n

LLLLLLLLLL

m

rrrrrrrrrr

Q[ 7
√

p]

7
LLLLLLLLLLL

Q[ 3
√

p]

3

rrrrrrrrrrr

Q

We now need to determine what m and n are. Note that we have that
3|[Q[ 3

√
p, 7

√
p] : Q] and 7|[Q[ 3

√
p, 7

√
p] : Q] and so the least common multiple

of 3 and 7 divides [Q[ 3
√

p, 7
√

p] : Q], i.e., 21|[Q[ 3
√

p, 7
√

p] : Q]. Note that x3 −p
is the irreducible polynomial over Q that generates the extension Q[ 3

√
p]. It

is possible that x3 − p is reducible over Q[ 7
√

p] (in fact it cannot be, as you
should be able to prove!). Regardless, since 3

√
p must be a root of a factor

of x3 − p over Q[ 7
√

p], we have that [Q[ 7
√

p, 3
√

p] : Q[ 7
√

p]] ≤ 3, i.e., m ≤ 3.
Using Proposition 1.5 we obtain that [Q[ 3

√
p, 7

√
p] : Q] ≤ 3 ·7 = 21. However,

we already had 21|[Q[ 3
√

p, 7
√

p] : Q], so it must be that [Q[ 3
√

p, 7
√

p] : Q] = 21
as desired and the result follows. �

8. Let p be a prime number.
(a) Let n ∈ N. Show that f(x) = xn − p is irreducible.



5

Proof: This polynomial is irreducible by Eisenstein’s criterion with the
prime p.�

(b) What is the degree of the field Q[ n

√
p] over Q?

The degree of this extension is n.

(c) Use part (b) to show that R is not a finite extension of Q.

Proof: Suppose R is a finite extension of Q, say [R : Q] = N for some
N ∈ N. Choose n > N . Then we have Q ⊂ Q[ n

√
p] ⊂ R with [Q[ n

√
p] :

Q] = n > N . However, this is a contradiction as Proposition 1.5 implies
that n|N . Thus, it must be that R is not a finite degree extension of Q. �

9. Let f(x) ∈ Q[x] be a polynomial of degree n and let K be the splitting
field of f(x). Prove that [K : Q] ≤ n!.

Proof: The easiest way to prove this result is to actually prove a more
general result: Let f(x) ∈ F [x] be a polynomial of degree n and let K be
the splitting field of f(x). Prove that [K : F ] ≤ n!.
We prove this result by induction on the degree of f(x). The case of n = 1 is
clear as there is no extension so the degree is clearly 1. Assume inductively
that for a polynomial g(x) ∈ E[x] where E is some field that the split-
ting field Eg of g(x) has degree less then or equal to (deg g(x))! whenever
deg(g(x)) ≤ k − 1. Note here that it is important to assume the result for
all fields and all degrees of g(x) less then or equal to k − 1. We will see why
this is important in a moment.
Let f(x) ∈ F [x] be a polynomial of degree k. Let α be a root of f(x) and
consider F [α] over F . The degree of this extension is at most k and is equal
to k precisely when f(x) is irreducible. We can factor f(x) = (x − α)mg(x)
in F [α][x]. The degree of g(x) is k − m and so we can apply our induction
hypothesis to g(x) and the field E = F [α]. So the splitting field Eg of g(x)
is a finite extension of F [α] of degree at most (k −m)!. Since Eg contains α
and all the roots of g(x), it must contain all the roots of f(x). In particular,
the splitting field of f(x) must be contained in Eg. However, we see that
we have F ⊆ F [α] ⊆ Eg and we have [Eg : F ] = [Eg : F [α]][F [α] : F ] ≤
k(k − m)! ≤ k(k − 1)! = k!. Now using that the splitting field of f(x) is
a subfield of Eg, it must be its degree over F is less then or equal to the
degree of Eg over F , i.e., the degree of the splitting field of f(x) over F is
at most k!. Thus we are done by induction. �
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