Math 581 Problem Set 5

1. Show that the set $\{\sqrt{2}, \sqrt{2}+i, \sqrt{3}-i\}$ is linearly independent over \mathbb{Q} .

2. Let $F \subseteq K$ be fields with [K : F] = p for some prime number p.

(a) Show that there is no field E so that $F \subsetneq E \subsetneq K$.

(b) Use part (a) to conclude there is no field F so that $\mathbb{R} \subsetneq F \subsetneq \mathbb{C}$.

(c) Let $\alpha \in K$ with $\alpha \notin F$. Prove that $K = F[\alpha]$.

(d) Use part (c) to conclude that $\mathbb{C} = \mathbb{R}[i]$.

3. Let V be a vector space over \mathbb{Q} . Prove that if $v, w \in V$ are linearly independent, then so are v + w, 2v - w.

4. Prove that $\{v_1, \ldots, v_k\}$ is a basis for V if and only if every vector in V can be written uniquely as a linear combination of v_1, \ldots, v_k .

5. Give a basis and the degree of the field extension in each of the following cases:

(a) $V = \mathbb{Q}[\omega_7]$ over \mathbb{Q} where ω_7 is a seventh root of unity (b) $V = \mathbb{Q}[\omega_6]$ over $\mathbb{Q}[i]$ where ω_6 is a sixth root of unity (c) $V = \mathbb{C}$ over \mathbb{R} (d) $V = (\mathbb{Z}/7\mathbb{Z}) [x]/\langle x^3 - 3 \rangle$ over $\mathbb{Z}/7\mathbb{Z}$.

6. Let $f(x) = 2x^{15} - 49x^{12} + 21x^7 + 70x^2 + 35$. Let K be an extension field of \mathbb{Q} with $[K : \mathbb{Q}] = 32$. Show K does not contain any roots of f(x).

7. Let p be a prime number. Show that $\mathbb{Q}[\sqrt[21]{p}] = \mathbb{Q}[\sqrt[3]{p}, \sqrt[7]{p}].$

8. Let p be a prime number.

(a) Let $n \in \mathbb{N}$. Show that $f(x) = x^n - p$ is irreducible.

(b) What is the degree of the field $\mathbb{Q}[\sqrt[n]{p}]$ over \mathbb{Q} ?

(c) Use part (b) to show that \mathbb{R} is not a finite extension of \mathbb{Q} .

9. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree n and let K be the splitting field of f(x). Prove that $[K : \mathbb{Q}] \leq n!$.