
Math 581 Problem Set 4 Solutions

1. Find the greatest common divisor of 2 + 3i and 6 − 7i in Z[i]. Write the
greatest common divisor as a linear combination of 2 + 3i and 6 − 7i.

Solution omitted.

An integral domain R is a Euclidean domain if there is a function δ from the
nonzero elements of R to the nonnegative integers with these properties:
(i) If a and b are nonzero elements of R, then δ(a) ≤ δ(ab).
(ii) If a, b ∈ R and b 6= 0R, then there exist q, r ∈ R such that a = bq + r
and either r = 0R or δ(r) < δ(b).

2. Let p be an irreducible element in a Euclidean domain R. Prove that if
p|bc, then p|b or p|c.

Proof: See the proof of Proposition 2.5 in Chapter 1. The exact same ar-
gument carries through here. See also Proposition 1.7 in Chapter 3 for the
corresponding statement in terms of polynomials.

3. Prove that every Euclidean domain is a PID.

Proof: Let R be an Euclidean domain and I be a non-zero ideal in R. Using
the map δ we can find an element a in I with δ(a) minimal. (The δ(a) are in
N!) Now let b be any element in I. Using the Euclidean algorithm we have
that there exists q and r with b = qa + r and r = 0 or δ(r) < δ(a). If r = 0,
then a|b and we are done. If r 6= 0, then δ(r) < δ(a) with r = b − qa ∈ I.
However, a was chosen so that δ(a) is minimal among elements of I. Thus
it must be that r = 0. Hence, I = 〈a〉. �

An ideal ℘ in a commutative ring R is said to be prime if ℘ 6= R and when-
ever bc ∈ ℘, then b ∈ ℘ or c ∈ ℘. An ideal m in a ring R is said to be
maximal if m 6= R and whenever I is an ideal such that m ⊂ I ⊂ R, then
m = I or I = R.

4. Prove that m is a maximal ideal if and only if R/m is a field.

Proof: We begin by proving the more general result, which you were told
you were allowed to quote without proof.
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Theorem: The ideals in R that contain I correspond bijectively to the
ideals in R/I.

Pf: Let J be an ideal that contains I and consider the onto homomor-
phism φ : R → R/I. We saw in a previous homework set that φ(J) is an
ideal in R/I. Alternatively, let M be an ideal in R/I. Note that M con-
tains 0R/I necessarily. Consider φ−1(M). This is an ideal by a previous
homework problem. We claim this contains I. Note that I = ker φ and so
I = φ−1(0R/I ) ⊂ φ−1(M). �

Let m be a maximal ideal of R. To see that R/m is a field we show that the
only ideals in R/m are 〈0R/m

〉 and R/m. Suppose J is an ideal in R/m that
is not the zero ideal or the entire ring. Then by the result above we see that
J gives an ideal in R that contains m. It is not equal to m or J would be
the zero ideal and it is not R or J would be R/m. This contradicts m being
a maximal ideal.
Let R/m be a field. Suppose that m ( I ( R. Then we have that φ(I) is a
non-zero ideal in R/m that is not equal to the entire ring, contradicting the
fact that R/m is a field. �

5. Prove that every maximal ideal is a prime ideal.

Proof: Let m be a maximal ideal in a ring R. Problem 4 shows that R/m
is a field. Since every field is an integral domain, we see from problem 10
on the midterm that m is necessarily a prime ideal. �

6. List all the maximal ideals in Z/10Z.

Solution: Note that all the ideals in this ring are principal by previ-
ous homework set. We also know that 〈n〉 = Z/10Z for all n so that
gcd(n, 10) = 1. This eliminates n = 1, 5, 7, 9 from consideration as a maxi-
mal ideal. It is only a matter of checking the remaining ideals to see which
are distinct. This leaves us with the ideals 〈0〉, 〈2〉, and 〈5〉. The zero ideal
is contained in every ideal, so is not a maximal ideal. The other two are
properly contained by no other ideal, so they are both maximal.

7. Show that the principal ideal 〈x − 1〉 in Z[x] is a prime ideal but not a
maximal ideal.

Proof: Define a map φ : Z[x] → Z by φ(f(x)) = f(1). This is a surjective
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map and is a homomorphism (it is an evaluation map). The kernel of this
map is 〈x−1〉, so Z[x]/〈x−1〉 ∼= Z. Since Z is an integral domain, 〈x−1〉 is
a prime ideal by problem 10 on the midterm. It is not a maximal ideal be-
cause Z is not a field, so 〈x−1〉 cannot be a maximal ideal (see problem 4). �

8. Let φ : R → S be a surjective homomorphism of commutative rings. If
℘ is a prime ideal in S, prove that φ−1(℘) is a prime ideal in R. (Note this
property is NOT true for maximal ideals!)

Proof: Note that φ−1(℘) is an ideal by previous homework. To see it
is prime, we must show if ab ∈ φ−1(℘), then a or b is in φ−1(℘). Let
ab ∈ φ−1(℘), i.e., φ(ab) ∈ ℘. Using that φ is a homomorphism we have that
φ(a)φ(b) ∈ ℘. Now we use that ℘ is a prime ideal to conclude that φ(a) or
φ(b) is in ℘. Thus, a or b is in φ−1(℘).
A more sophisticated proof is as follows. Since 0S ∈ ℘ necessarily, it follows
from the definition that kerφ ⊂ φ−1(I). Thus, one has that by considering
the map induced from φ given by R → S → S/℘ that R/φ−1(℘) is isomor-
phic to its image inside S/℘. Thus, R/φ−1(℘) is isomorphic to a subring of
an integral domain, thus must be an integral domain itself. Thus, φ−1(℘) is
a prime ideal. �

9. Suppose that I ( R is an ideal with the property that every element
a /∈ I is a unit. Prove that I is a maximal ideal.

Proof: Suppose J is an ideal such that I ( J ⊆ R. To see that I is a
maximal ideal, we need to show that J = R. Since I ( J there is at least
one element a in J that is not in I. However, by assumption we know that
since a /∈ I, a must be a unit. Since J contains a unit, we know J = R by
previous homework. Thus I is a maximal ideal. �

10. Prove that the maximal ideals of C[x] are in a one-to-one correspon-
dence with points of C, i.e., there is a bijection between the set of maximal
ideals in C[x] and C.

Proof: Let a ∈ C and consider the ideal 〈x − a〉 ⊂ C[x]. One has that
C[x]/〈x − a〉 ∼= C, thus 〈x − a〉 is a maximal ideal by problem 4. Thus,
we get a map from C to the set of maximal ideals of C[x] by sending a to
〈x−a〉. It is clear that this map is an injective map, i.e., if 〈x−a〉 = 〈x− b〉
then a = b. (Otherwise we would have x − a and x − b both in an ideal,
but for a 6= b these are relatively prime, and hence the ideal would contain
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1 and be the entire ring.) To see this map is surjective, let m be a maximal
ideal in C[x]. We know that C[x] is a PID (we saw this with F [x], so just
apply that result with F = C.) Let m = 〈f(x)〉. Consider the quotient ring
C[x]/〈f(x)〉. If deg f(x) ≥ 2, then f(x) factors into linear polynomials over
C and hence is reducible in C[x]. Thus, C[x]/〈f(x)〉 is a field if and only
if deg f(x) = 1. Thus maximal ideals are generated by linear polynomials,
i.e., they are determined by a complex number, the root of the linear poly-
nomial. �


