Math 581 Problem Set 4 Solutions

1. Find the greatest common divisor of $2 + 3i$ and $6 - 7i$ in $\mathbb{Z}[i]$. Write the greatest common divisor as a linear combination of $2 + 3i$ and $6 - 7i$.

Solution omitted.

and either $r = 0_R$ or $\delta(r) < \delta(b)$.

An integral domain R is a Euclidean domain if there is a function δ from the nonzero elements of R to the nonnegative integers with these properties: (i) If a and b are nonzero elements of R, then $\delta(a) \leq \delta(ab)$. (ii) If $a, b \in R$ and $b \neq 0_R$, then there exist $q, r \in R$ such that $a = bq + r$

2. Let p be an irreducible element in a Euclidean domain R . Prove that if $p|bc$, then $p|b$ or $p|c$.

Proof: See the proof of Proposition 2.5 in Chapter 1. The exact same argument carries through here. See also Proposition 1.7 in Chapter 3 for the corresponding statement in terms of polynomials.

3. Prove that every Euclidean domain is a PID.

Proof: Let R be an Euclidean domain and I be a non-zero ideal in R . Using the map δ we can find an element a in I with $\delta(a)$ minimal. (The $\delta(a)$ are in \mathbb{N} !) Now let b be any element in I. Using the Euclidean algorithm we have that there exists q and r with $b = qa + r$ and $r = 0$ or $\delta(r) < \delta(a)$. If $r = 0$, then a|b and we are done. If $r \neq 0$, then $\delta(r) < \delta(a)$ with $r = b - qa \in I$. However, a was chosen so that $\delta(a)$ is minimal among elements of I. Thus it must be that $r = 0$. Hence, $I = \langle a \rangle$.

An ideal \wp in a commutative ring R is said to be *prime* if $\wp \neq R$ and whenever $bc \in \varphi$, then $b \in \varphi$ or $c \in \varphi$. An ideal m in a ring R is said to be *maximal* if $m \neq R$ and whenever I is an ideal such that $m \subset I \subset R$, then $\mathfrak{m} = I$ or $I = R$.

4. Prove that \mathfrak{m} is a maximal ideal if and only if R/\mathfrak{m} is a field.

Proof: We begin by proving the more general result, which you were told you were allowed to quote without proof.

Theorem: The ideals in R that contain I correspond bijectively to the ideals in R/I .

Pf: Let J be an ideal that contains I and consider the onto homomorphism $\phi: R \to R/I$. We saw in a previous homework set that $\phi(J)$ is an ideal in R/I . Alternatively, let M be an ideal in R/I . Note that M contains $0_{R/I}$ necessarily. Consider $\phi^{-1}(M)$. This is an ideal by a previous homework problem. We claim this contains I. Note that $I = \ker \phi$ and so $I = \phi^{-1}(0_{R/I}) \subset \phi^{-1}(M)$.

Let $\mathfrak m$ be a maximal ideal of R. To see that $R/\mathfrak m$ is a field we show that the only ideals in R/m are $\langle 0_{R/m} \rangle$ and R/m. Suppose J is an ideal in R/m that is not the zero ideal or the entire ring. Then by the result above we see that J gives an ideal in R that contains m . It is not equal to m or J would be the zero ideal and it is not R or J would be R/\mathfrak{m} . This contradicts \mathfrak{m} being a maximal ideal.

Let R/\mathfrak{m} be a field. Suppose that $\mathfrak{m} \subsetneq I \subsetneq R$. Then we have that $\phi(I)$ is a non-zero ideal in R/\mathfrak{m} that is not equal to the entire ring, contradicting the fact that R/\mathfrak{m} is a field. \blacksquare

5. Prove that every maximal ideal is a prime ideal.

Proof: Let \mathfrak{m} be a maximal ideal in a ring R. Problem 4 shows that R/\mathfrak{m} is a field. Since every field is an integral domain, we see from problem 10 on the midterm that $\mathfrak m$ is necessarily a prime ideal.

6. List all the maximal ideals in $\mathbb{Z}/10\mathbb{Z}$.

Solution: Note that all the ideals in this ring are principal by previous homework set. We also know that $\langle n \rangle = \mathbb{Z}/10\mathbb{Z}$ for all n so that $gcd(n, 10) = 1$. This eliminates $n = 1, 5, 7, 9$ from consideration as a maximal ideal. It is only a matter of checking the remaining ideals to see which are distinct. This leaves us with the ideals $\langle 0 \rangle$, $\langle 2 \rangle$, and $\langle 5 \rangle$. The zero ideal is contained in every ideal, so is not a maximal ideal. The other two are properly contained by no other ideal, so they are both maximal.

7. Show that the principal ideal $\langle x - 1 \rangle$ in $\mathbb{Z}[x]$ is a prime ideal but not a maximal ideal.

Proof: Define a map $\phi : \mathbb{Z}[x] \to \mathbb{Z}$ by $\phi(f(x)) = f(1)$. This is a surjective

map and is a homomorphism (it is an evaluation map). The kernel of this map is $\langle x-1\rangle$, so $\mathbb{Z}[x]/\langle x-1\rangle \cong \mathbb{Z}$. Since $\mathbb Z$ is an integral domain, $\langle x-1\rangle$ is a prime ideal by problem 10 on the midterm. It is not a maximal ideal because Z is not a field, so $\langle x-1 \rangle$ cannot be a maximal ideal (see problem 4). \blacksquare

8. Let $\phi: R \to S$ be a surjective homomorphism of commutative rings. If φ is a prime ideal in S, prove that $\phi^{-1}(\varphi)$ is a prime ideal in R. (Note this property is NOT true for maximal ideals!)

Proof: Note that $\phi^{-1}(\varphi)$ is an ideal by previous homework. To see it is prime, we must show if $ab \in \phi^{-1}(\wp)$, then a or b is in $\phi^{-1}(\wp)$. Let $ab \in \phi^{-1}(\wp)$, i.e., $\phi(ab) \in \wp$. Using that ϕ is a homomorphism we have that $\phi(a)\phi(b) \in \varphi$. Now we use that φ is a prime ideal to conclude that $\phi(a)$ or $\phi(b)$ is in \wp . Thus, a or b is in $\phi^{-1}(\wp)$.

A more sophisticated proof is as follows. Since $0_S \in \wp$ necessarily, it follows from the definition that ker $\phi \subset \phi^{-1}(I)$. Thus, one has that by considering the map induced from ϕ given by $R \to S \to S/\wp$ that $R/\phi^{-1}(\wp)$ is isomorphic to its image inside S/\wp . Thus, $R/\phi^{-1}(\wp)$ is isomorphic to a subring of an integral domain, thus must be an integral domain itself. Thus, $\phi^{-1}(\wp)$ is a prime ideal.

9. Suppose that $I \subsetneq R$ is an ideal with the property that every element $a \notin I$ is a unit. Prove that I is a maximal ideal.

Proof: Suppose J is an ideal such that $I \subseteq J \subseteq R$. To see that I is a maximal ideal, we need to show that $J = R$. Since $I \subsetneq J$ there is at least one element a in J that is not in I . However, by assumption we know that since $a \notin I$, a must be a unit. Since J contains a unit, we know $J = R$ by previous homework. Thus I is a maximal ideal. \blacksquare

10. Prove that the maximal ideals of $\mathbb{C}[x]$ are in a one-to-one correspondence with points of \mathbb{C} , i.e., there is a bijection between the set of maximal ideals in $\mathbb{C}[x]$ and \mathbb{C} .

Proof: Let $a \in \mathbb{C}$ and consider the ideal $\langle x - a \rangle \subset \mathbb{C}[x]$. One has that $\mathbb{C}[x]/\langle x - a \rangle \cong \mathbb{C}$, thus $\langle x - a \rangle$ is a maximal ideal by problem 4. Thus, we get a map from $\mathbb C$ to the set of maximal ideals of $\mathbb C[x]$ by sending a to $\langle x-a \rangle$. It is clear that this map is an injective map, i.e., if $\langle x-a \rangle = \langle x-b \rangle$ then $a = b$. (Otherwise we would have $x - a$ and $x - b$ both in an ideal, but for $a \neq b$ these are relatively prime, and hence the ideal would contain

1 and be the entire ring.) To see this map is surjective, let m be a maximal ideal in $\mathbb{C}[x]$. We know that $\mathbb{C}[x]$ is a PID (we saw this with $F[x]$, so just apply that result with $F = \mathbb{C}$. Let $\mathfrak{m} = \langle f(x) \rangle$. Consider the quotient ring $\mathbb{C}[x]/\langle f(x)\rangle$. If deg $f(x) \geq 2$, then $f(x)$ factors into linear polynomials over $\mathbb C$ and hence is reducible in $\mathbb C[x]$. Thus, $\mathbb C[x]/\langle f(x)\rangle$ is a field if and only if deg $f(x) = 1$. Thus maximal ideals are generated by linear polynomials, i.e., they are determined by a complex number, the root of the linear polynomial.