Math 581 Problem Set 4

1. Find the greatest common divisor of 2 + 3i and 6 - 7i in $\mathbb{Z}[i]$. Write the greatest common divisor as a linear combination of 2 + 3i and 6 - 7i.

An integral domain R is a *Euclidean domain* if there is a function δ from the nonzero elements of R to the nonnegative integers with these properties:

- (i) If a and b are nonzero elements of R, then $\delta(a) \leq \delta(ab)$.
- (ii) If $a, b \in R$ and $b \neq 0_R$, then there exist $q, r \in R$ such that a = bq + r and either $r = 0_R$ or $\delta(r) < \delta(b)$.
- **2.** Let p be an irreducible element in a Euclidean domain R. Prove that if p|bc, then p|b or p|c.
- 3. Prove that every Euclidean domain is a PID.

An ideal \wp in a commutative ring R is said to be *prime* if $\wp \neq R$ and whenever $bc \in \wp$, then $b \in \wp$ or $c \in \wp$. An ideal \mathfrak{m} in a ring R is said to be maximal if $\mathfrak{m} \neq R$ and whenever I is an ideal such that $\mathfrak{m} \subset I \subset R$, then $\mathfrak{m} = I$ or I = R.

- **4.** Prove that \mathfrak{m} is a maximal ideal if and only if R/\mathfrak{m} is a field.
- **5.** Prove that every maximal ideal is a prime ideal.
- **6.** List all the maximal ideals in $\mathbb{Z}/10\mathbb{Z}$.
- 7. Show that the principal ideal $\langle x-1 \rangle$ in $\mathbb{Z}[x]$ is a prime ideal but not a maximal ideal.
- **8.** Let $\phi: R \to S$ be a surjective homomorphism of commutative rings. If \wp is a prime ideal in S, prove that $\phi^{-1}(\wp)$ is a prime ideal in R. (Note this property is NOT true for maximal ideals!)
- **9.** Suppose that $I \subseteq R$ is an ideal with the property that every element $a \notin I$ is a unit. Prove that I is a maximal ideal.
- 10. Prove that the maximal ideals of $\mathbb{C}[x]$ are in a one-to-one correspondence with points of \mathbb{C} , i.e., there is a bijection between the set of maximal

ideals in $\mathbb{C}[x]$ and \mathbb{C} .