
Math 581 Problem Set 3 Solutions

1. Prove that complex conjugation is a isomorphism from C to C.

Proof: First we prove that it is a homomorphism. Define φ : C → C by
φ(z) = z. Note that φ(1) = 1. The other properties of a homomorphism
follow from properties of complex conjugation proved last term, namely, we
have

φ(z + w) = z + w

= z + w

= φ(z) + φ(w)

and

φ(zw) = zw

= z · w
= φ(z)φ(w).

Thus, φ is a homomorphism. To see φ is surjective, let z ∈ C. Then
φ(z) = z = z. The fact that φ is injective follows from the fact that z = 0
if and only if z = 0. Thus, φ is an isomorphism. �

2. Let a, b ∈ R and suppose 〈a〉 = 〈b〉. What can we conclude about a and b?

Note that since the ideals are equal, we have a ∈ 〈b〉 and b ∈ 〈a〉, i.e., b|a
and a|b. This is equivalent to the statement that there exists k, l ∈ R so
that a = bk and b = al. Substituting, we have a = alk. Similarly, we have
b = bkl. Thus we have a(1R − lk) = 0R and b(1R − kl) = 0R. Thus, either
a and b are zero divisors, or kl = 1R. If kl = 1R, then k and l are units and
we can say a and b differ by a unit.

3. Find all ideals in the ring Z/12Z.

Note that in problem 6 we will show that Z/12Z is a PID, so we only need
to decide which of the principal ideals are equal. Recall that if a ∈ Z is
relatively prime to 12 then a is a unit in Z/12Z. (You should be able to
prove this fact!) We also have seen that if an ideal contains a unit, the ideal
must be the entire ring. Therefore, the ideals 〈1〉, 〈5〉, 〈7〉, and 〈11〉 are all
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equal to Z/12Z. We also have the ideals:

〈2〉 = {0, 2, 4, 6, 8, 10},
〈3〉 = {0, 3, 6, 9},
〈4〉 = {0, 4, 8},
〈6〉 = {0, 6},

〈8〉 = {0, 4, 8} = 〈4〉,
〈10〉 = {0, 2, 4, 6, 8, 10} = 〈2〉.

This is a complete list of the ideals.

4. Prove that the map φ : Z/pZ → Z/pZ defined by φ(x) = xp is a ring
homomorphism for p a prime. Find kerφ.

Proof: Note first that φ(1) = 1. We also have φ(xy) = (xy)p = xpyp =
φ(x)φ(y) where we have used that Z/pZ is commutative. To see that φ
respects addition, observe that φ(x+ y) = (x+ y)p = xp + yp = φ(x) +φ(y)
where we have used that p divides the binomial coefficients. Thus φ is a
homomorphism. Let x ∈ kerφ. Then xp = 0. However, Z/pZ is a field, so
there are no zero-divisors. Thus it must be that x = 0. One should also note
that since these are finite sets with the same number of elements, an injec-
tive function must also be surjective. Thus, φ is actually an isomorphism! �

5. Use the ring homomorphism φ : Z → Z/mZ for an appropriate value of
m to prove that the equation x2 − 5y2 = 2 has no solution for x, y ∈ Z.

Proof: Suppose that (x, y) ∈ Z×Z is a solution to the equation. Applying
φ to the equation x2 − 5y2 = 2 with m = 5 and using that φ is a homomor-
phism gives the equation φ(x)2 = φ(2) = 2. However, it is easy to check
that there is no element in Z/5Z that squares to give 2. Thus, there can be
no such (x, y). �

6. Let R and S be commutative rings, and let φ : R → S be a ring homo-
morphism.

(a) Give an ideal J ⊂ S, define

φ−1(J) = {r ∈ R : φ(r) ∈ J} ⊂ R.
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Prove that φ−1(J) is an ideal.

Proof: Note that since φ is a homomorphism, 0R ∈ φ−1(J) since OS is
necessarily in J . Let a, b ∈ φ−1(J). Then we have φ(a), φ(b) ∈ J by defi-
nition. Since J is an ideal, φ(a) + φ(b) ∈ J . But φ is a homomorphism, so
φ(a+b) = φ(a)+φ(b) ∈ J . Thus, a+b ∈ φ−1(J). Let r ∈ R. Then since J is
an ideal, φ(r)φ(a) ∈ J . Since φ is a homomorphism, φ(ra) = φ(r)φ(a) ∈ J .
Thus, ra ∈ φ−1(J). Thus φ−1(J) is an ideal. �

(b) Given an ideal I ⊂ R, prove that

φ(I) = {φ(r) : r ∈ I} ⊂ S

is an ideal if φ is surjective.

Proof: Note that OS ∈ φ(I) since φ is a homomorphism and 0R ∈ I neces-
sarily. Let c, d ∈ φ(I). By definition there exists a, b ∈ I so that φ(a) = c
and φ(b) = d. Since I is an ideal, a + b ∈ I. Thus, c + d = φ(a) + φ(b) =
φ(a + b) ∈ φ(I). Now let s ∈ S. Since φ is surjective, there exists an r ∈ R
so that φ(r) = s. Then one has cs = φ(a)φ(r) = φ(ar) ∈ φ(I) since ar ∈ I
(I an ideal). Thus we have that φ(I) is an ideal.
If φ is not surjective this is not necessarily true. For example, consider the
map φ : Z → Q that is the identity, i.e., φ(n) = n. Let I = 〈2〉. Then one
has φ(I) = I in Q. However, in Q this is no longer an ideal as 1

2
∈ Q and

2 ∈ I but 1 /∈ I. �

(c) Prove that every ideal in Z/mZ is principal.

Proof: Let I be an ideal in Z/mZ. By part (a) we know that φ−1(I) is
an ideal in Z. Since Z is a PID, there exists n ∈ Z so that φ−1(I) = 〈n〉.
Let a ∈ I. Observe that there exists b ∈ φ−1(I) so that φ(b) = a. Since
b ∈ φ−1(I) we have n|b. Thus there exists r ∈ Z so that rn = b. Applying
φ we have φ(r)φ(n) = a. This shows that any element of I is divisible by
φ(n), i.e., I = 〈φ(n)〉. One should also observe that this same proof works
to show that if ψ : R → S is a ring homomorphism from a PID to a ring,
then φ(R) is a PID as well. �

7. If gcd(m,n) = 1 in Z, prove that 〈m〉 ∩ 〈n〉 is the ideal 〈mn〉.

Proof: Recall that 〈a〉 = {ax : x ∈ Z}. Let mnx ∈ 〈mn〉. Then mnx ∈ 〈m〉
and mnx ∈ 〈n〉 for all x ∈ Z, so 〈mn〉 ⊂ 〈m〉 ∩ 〈n〉. Now let a ∈ 〈m〉 ∩ 〈n〉,



4

i.e., a ∈ 〈m〉 and a ∈ 〈n〉. Thus, m|a and n|a. As we saw in a previous
homework problem, since gcd(m,n) = 1, we have mn|a. Thus, a ∈ 〈mn〉.
Combining this with the above containment gives 〈m〉 ∩ 〈n〉 = 〈mn〉, as
claimed. �

8. Let φ : R→ S be an isomorphism. Prove that:
(a) φ(u) is a unit if and only if u is a unit

Proof: Let u ∈ R be a unit, i.e., there exists t ∈ R so that ut = 1R = tu. Ap-
plying φ we see this is equivalent to the statement that φ(ut) = 1S = φ(tu).
Since φ is a homomorphism, we obtain φ(u)φ(t) = 1S = φ(t)φ(u). Thus, if u
is a unit then φ(u) is a unit. Now suppose φ(u) is a unit, i.e., there exists an
s ∈ S so that φ(u)s = 1S = sφ(u). Here we use that φ is surjective to con-
clude that there exists a t ∈ R so that φ(t) = s. Thus, φ(ut) = 1S = φ(1R).
Now use that φ is injective to conclude that ut = 1R and similarly for tu.
Thus, u is a unit. �

(b) φ(b) is a zero-divisor if and only if b is a zero-divisor

Proof: Let b ∈ R be a zero-divisor, i.e., there exists an a ∈ R with a 6= 0R

so that ab = 0R = ba. As above, we apply φ to obtain φ(a)φ(b) = 0S =
φ(b)φ(a). Here it is important to note that since φ is an isomorphism, it
is injective so that φ(a) 6= 0S and so φ(a) and φ(b) are zero-divisors. Now
suppose that φ(b) is a zero-divisor, i.e., there exists a 0 6= c ∈ S so that
φ(b)c = 0S = cφ(b). Since φ is surjective, there exists a ∈ R so that
φ(a) = c. Thus φ(ab) = φ(ba) = 0S . Since φ is injective we have that
a 6= 0R and ab = 0R = ba. Thus, b is a zero-divisor. �

9. Using the first isomorphism theorem, prove that Q[x]/〈x2 +x+1〉 ∼= Q[ω]
where ω is a third root of unity.

Proof: Recall that Q[ω] = {f(ω) : f(x) ∈ Q[x]}. This leads one to define
φ : Q[x] → Q[ω] by φ(f(x)) = f(ω). Clearly φ is surjective. To see φ is a
homomorphism, observe that

φ(f(x)g(x)) = f(ω)g(ω)

= φ(f(x))φ(g(x))
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and

φ(f(x) + g(x)) = f(ω) + g(ω)

= φ(f(x)) + φ(g(x)).

It is also clear that φ(1) = 1. Now we just need to prove that kerφ =
〈x2 + x+ 1〉. Since ω2 +ω+ 1 = 0, one sees that 〈x2 + x+ 1〉 ⊂ kerφ. Since
Q[x] is a PID and x2 + x + 1 is irreducible (degree 2 polynomial with no
rational roots!), we must have kerφ = 〈x2 + x + 1〉. (See Corl 1.3!) Thus,
by the 1st isomorphism theorem we have that Q[x]/〈x2 + x+ 1〉 ∼= Q[ω]. �

10. Is (Z/3Z) × (Z/3Z) ∼= Z/9Z? Be sure to justify your answer.

Proof: Suppose these two rings are isomorphic. Then there exists an iso-
morphism φ : Z/9Z → (Z/3Z)×(Z/3Z). Since φ is an isomorphism, we know
that φ(1) = (1, 1). Thus, φ(2) = φ(1 + 1) = φ(1) + φ(1) = (1, 1) + (1, 1) =
(2, 2). Similarly, φ(3) = φ(2 + 1) = φ(2) + φ(1) = (2, 2) + (1, 1) = (3, 3) =
(0, 0). This is a contradiction however as then 3 ∈ kerφ, but φ being an
isomorphism means that φ is injective and has trivial kernel. Thus there
can be no such isomorphism. �

11. Let p be a prime number.
(a) Prove that Q[

√
p] ∼= Q[x]/〈x2 − p〉.

Proof: Define φ : Q[x] → Q[
√
p] by φ(f(x)) = f(

√
p). Now one uses

the first isomorphism theorem just as in problem 9. The only difference it
concluding that x2 − p is irreducible by Eisenstein’s criterion with p. �

(b) Prove that

Q[
√
p] ∼=

{(

a pb
b a

)

: a, b ∈ Q

}

.

Proof: Set A =

{(

a pb
b a

)

: a, b ∈ Q

}

. Define the map φ : A → Q[
√
p] by
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φ

((

a pb
b a

))

= a+ b
√
p. Note that φ

((

1 0
0 1

))

= 1. We also have

φ

((

a pb
b a

)

+

(

c pd
d c

))

= φ

((

a+ c p(b+ d)
b+ d a+ c

))

= (a+ c) + (b+ d)
√
p

= (a+ b
√
p) + (c+ d

√
p)

= φ

((

a pb
b a

))

+ φ

((

c pd
d c

))

.

and

φ

((

a pb
b a

)(

c pd
d c

))

= φ

((

ac+ pbd p(ad+ bc)
ad+ bc ac+ pbd

))

= ac+ pbd+ (ad+ bc)
√
p

= (a+ b
√
p)(c + d

√
p)

= φ

((

a pb
b a

))

φ

((

c pd
d c

))

.

Thus we have that φ is a homomorphism. Now we just need to show φ
is surjective and injective. Let a + b

√
p ∈ Q[

√
p]. To see φ is surjective,

just observe that φ

((

a pb
b a

))

= a + b
√
p. To see φ is injective, sup-

pose φ

((

a pb
b a

))

= 0. Then, 0 = a + b
√
p so a = b = 0 and thus

(

a pb
b a

)

=

(

0 0
0 0

)

so so kerφ = 0. Thus, φ is an isomorphism. �


