Math 581 Problem Set 3 Solutions

1. Prove that complex conjugation is a isomorphism from C to C.

Proof: First we prove that it is a homomorphism. Define ¢ : C — C by
¢(z) = z. Note that ¢(1) = 1. The other properties of a homomorphism
follow from properties of complex conjugation proved last term, namely, we

have
pz4+w) = z4+w
= z+w
= ¢(2) + o(w)
and
p(zw) = zZw
= ¢(2)(w)

Thus, ¢ is a homomorphism. To see ¢ is surjective, let z € C. Then
#(z) =z = z. The fact that ¢ is injective follows from the fact that z =0
if and only if z = 0. Thus, ¢ is an isomorphism. H

2. Let a,b € R and suppose (a) = (b). What can we conclude about a and b?

Note that since the ideals are equal, we have a € (b) and b € (a), i.e., bla
and a|b. This is equivalent to the statement that there exists k,l € R so
that a = bk and b = al. Substituting, we have a = alk. Similarly, we have
b = bkl. Thus we have a(lp — lk) = Or and b(1r — kl) = Or. Thus, either
a and b are zero divisors, or kl = 1i. If kl = 15, then k£ and [ are units and
we can say a and b differ by a unit.

3. Find all ideals in the ring Z/12Z.

Note that in problem 6 we will show that Z/12Z is a PID, so we only need
to decide which of the principal ideals are equal. Recall that if a € Z is
relatively prime to 12 then @ is a unit in Z/12Z. (You should be able to
prove this fact!) We also have seen that if an ideal contains a unit, the ideal
must be the entire ring. Therefore, the ideals (1), (5), (7), and (11) are all



equal to Z/127Z. We also have the ideals:

This is a complete list of the ideals.

4. Prove that the map ¢ : Z/pZ — 7/pZ defined by ¢(z) = 2P is a ring
homomorphism for p a prime. Find ker ¢.

Proof: Note first that ¢(1) = 1. We also have ¢(zy) = (vy)? = 2Py? =
d(x)o(y) where we have used that Z/pZ is commutative. To see that ¢
respects addition, observe that ¢(x +y) = (z+y)? = 2P + 4P = ¢(x) + ¢(y)
where we have used that p divides the binomial coefficients. Thus ¢ is a
homomorphism. Let x € ker ¢. Then zP = 0. However, Z/pZ is a field, so
there are no zero-divisors. Thus it must be that z = 0. One should also note
that since these are finite sets with the same number of elements, an injec-
tive function must also be surjective. Thus, ¢ is actually an isomorphism! W

5. Use the ring homomorphism ¢ : Z — Z/mZ for an appropriate value of
m to prove that the equation z2 — 5y? = 2 has no solution for z,y € Z.

Proof: Suppose that (z,y) € Z x Z is a solution to the equation. Applying
¢ to the equation 22 — 5y? = 2 with m = 5 and using that ¢ is a homomor-
phism gives the equation ¢(z)? = ¢(2) = 2. However, it is easy to check
that there is no element in Z/5Z that squares to give 2. Thus, there can be
no such (z,y). W

6. Let R and S be commutative rings, and let ¢ : R — S be a ring homo-
morphism.

(a) Give an ideal J C S, define

o' (J)={reR:¢(r) e J} CR.



Prove that ¢~1(J) is an ideal.

Proof: Note that since ¢ is a homomorphism, 0r € ¢~(J) since Og is
necessarily in J. Let a,b € ¢~'(.J). Then we have ¢(a), p(b) € J by defi-
nition. Since J is an ideal, ¢(a) + ¢(b) € J. But ¢ is a homomorphism, so
d(a+b) = ¢(a)+¢(b) € J. Thus, a+b € ¢~1(J). Let r € R. Then since J is
an ideal, ¢(r)¢(a) € J. Since ¢ is a homomorphism, ¢(ra) = ¢(r)p(a) € J.
Thus, ra € ¢~1(J). Thus ¢~1(J) is an ideal. W

(b) Given an ideal I C R, prove that
o(I)=A{¢o(r):rel}cs

is an ideal if ¢ is surjective.

Proof: Note that Og € ¢(I) since ¢ is a homomorphism and O € I neces-
sarily. Let ¢,d € ¢(I). By definition there exists a,b € I so that ¢(a) = ¢
and ¢(b) = d. Since [ is an ideal, a + b € I. Thus, ¢+ d = ¢(a) + ¢(b) =
d(a+b) € ¢(I). Now let s € S. Since ¢ is surjective, there exists an r € R
so that ¢(r) = s. Then one has cs = ¢(a)p(r) = ¢(ar) € ¢(I) since ar €
(I an ideal). Thus we have that ¢(I) is an ideal.

If ¢ is not surjective this is not necessarily true. For example, consider the
map ¢ : Z — Q that is the identity, i.e., ¢(n) = n. Let I = (2). Then one
has ¢(I) = I in Q. However, in Q this is no longer an ideal as % € Q and
2¢cIbutl¢l. M

(c) Prove that every ideal in Z/mZ is principal.

Proof: Let I be an ideal in Z/mZ. By part (a) we know that ¢~1(I) is
an ideal in Z. Since Z is a PID, there exists n € Z so that ¢ ~1(I) = (n).
Let a € I. Observe that there exists b € ¢~ 1(I) so that ¢(b) = a. Since
b € ¢~ (I) we have n|b. Thus there exists r € Z so that rn = b. Applying
¢ we have ¢(r)p(n) = a. This shows that any element of I is divisible by
¢(n), i.e., I = (¢p(n)). One should also observe that this same proof works
to show that if ¢ : R — S is a ring homomorphism from a PID to a ring,
then ¢(R) is a PID as well. B

7. If gcd(m,n) =1 in Z, prove that (m) N (n) is the ideal (mn).

Proof: Recall that (a) = {az : © € Z}. Let mna € (mn). Then mnx € (m)
and mnz € (n) for all x € Z, so (mn) C (m) N (n). Now let a € (m) N (n),



ie., a € (m) and a € (n). Thus, m|a and nla. As we saw in a previous
homework problem, since ged(m,n) = 1, we have mn|a. Thus, a € (mn).
Combining this with the above containment gives (m) N (n) = (mn), as
claimed. W

8. Let ¢ : R — S be an isomorphism. Prove that:
(a) ¢(u) is a unit if and only if u is a unit

Proof: Let u € R beaunit, i.e., there exists t € R so that ut = 1p = tu. Ap-
plying ¢ we see this is equivalent to the statement that ¢(ut) = 1g = ¢(tu).
Since ¢ is a homomorphism, we obtain ¢(u)¢(t) = 1g = ¢(t)p(u). Thus, if u
is a unit then ¢(u) is a unit. Now suppose ¢(u) is a unit, i.e., there exists an
s € S so that ¢(u)s = 1g = s¢(u). Here we use that ¢ is surjective to con-
clude that there exists a ¢t € R so that ¢(t) = s. Thus, ¢(ut) =15 = ¢(1Rr).
Now use that ¢ is injective to conclude that ut = 1 and similarly for tu.
Thus, « is a unit. W

(b) ¢(b) is a zero-divisor if and only if b is a zero-divisor

Proof: Let b € R be a zero-divisor, i.e., there exists an a € R with a # Op
so that ab = Or = ba. As above, we apply ¢ to obtain ¢(a)p(b) = 0g =
d(b)p(a). Here it is important to note that since ¢ is an isomorphism, it
is injective so that ¢(a) # Og and so ¢(a) and ¢(b) are zero-divisors. Now
suppose that ¢(b) is a zero-divisor, i.e., there exists a 0 # ¢ € S so that
p(b)e = 0s = c¢(b). Since ¢ is surjective, there exists a € R so that
¢(a) = c. Thus ¢(ab) = ¢(ba) = 0g. Since ¢ is injective we have that
a # 0r and ab = Og = ba. Thus, b is a zero-divisor. W

9. Using the first isomorphism theorem, prove that Q[z]/(z?+z+1) = Q[w]
where w is a third root of unity.

Proof: Recall that Qw] = {f(w) : f(z) € Q[z]}. This leads one to define
¢ : Qx] — Qw] by ¢(f(z)) = f(w). Clearly ¢ is surjective. To see ¢ is a
homomorphism, observe that

¢(f(x)g(z)) = [flw)g(w)



and

¢(f(x) +9(x) = [flw)+g(w)
= o(f(@)) + o(9(2)).

It is also clear that ¢(1) = 1. Now we just need to prove that ker¢ =
(% + 2+ 1). Since w? + w+ 1 = 0, one sees that (z? +z + 1) C ker ¢. Since
Q[z] is a PID and 22 + x + 1 is irreducible (degree 2 polynomial with no
rational roots!), we must have ker ¢ = (2 + x + 1). (See Corl 1.3!) Thus,
by the 15¢ isomorphism theorem we have that Q[z]/(z? +x +1) = Q[w]. B

10. Is (Z/3Z) x (Z/3Z) = Z/9Z? Be sure to justify your answer.

Proof: Suppose these two rings are isomorphic. Then there exists an iso-
morphism ¢ : Z/9Z — (Z/3Z) x(Z/37Z). Since ¢ is an isomorphism, we know
that ¢(1) = (1,1). Thus, ¢(2) =¢(1+1) =o(1) +¢(1) = (1,1) + (1,1) =
(2,2). Similarly, ¢(3) = ¢(24+ 1) = ¢(2) + (1) = (2,2) + (1,1) = (3,3) =
(0,0). This is a contradiction however as then 3 € ker ¢, but ¢ being an
isomorphism means that ¢ is injective and has trivial kernel. Thus there
can be no such isomorphism. Wl

11. Let p be a prime number.

(a) Prove that Q[/p] = Q[z]/(2* — p).
Proof: Define ¢ : Q[z] — Q[\/p] by ¢(f(z)) = f(,/p). Now one uses

the first isomorphism theorem just as in problem 9. The only difference it
concluding that 22 — p is irreducible by Eisenstein’s criterion with p. W

ava={(; %) :aveal.

b
Proof: Set A = {(Z 2;) ta,b € Q}. Define the map ¢ : A — Q[/p] by

(b) Prove that



(Zﬁ <<Z Zb)) :a—i—b\/]_) Note that (ZS <<(1) (1)>) = 1. We also have

o) () = o (Gra )
+c)+ (b+d)\/p
+by/p) + (c+d\/p)

=+ 2) (%))
o6 )G 7)) = el mead)

= ac+ pbd + (ad + be)\/p
= (a+byp)le+dyp)

=6 W)e (G 7))

Thus we have that ¢ is a homomorphism. Now we just need to show ¢
is surjective and injective. Let a + b\/p € Q[\/p]. To see ¢ is surjective,

just observe that ¢ <(Z ];b)) = a + by/p. To see ¢ is injective, sup-

(a
(a

and

pose ¢<(Z Zb>> = 0. Then, 0 = a +by/p so a = b = 0 and thus

(Z ];b> = <8 8) so so ker ¢ = 0. Thus, ¢ is an isomorphism. W



