
Math 581 Problem Set 2 Solutions

1. Determine if the following polynomials are irreducible over Q. If they
are, prove it. If not, write them as a product of irreducible polynomials.
(a) f(x) = 5x11 − 6x4 + 12x3 + 36x − 6

This is irreducible by Eisenstein’s criterion with p = 3.

(b) f(x) = 2x4 + 7x3 + 5x2 + 7x + 3

The Rational Root Theorem gives the factorization

f(x) = (x + 3)(2x + 1)(x2 + 1).

(c) f(x) = 9x4 + 4x3 − 3x + 7

Consider this polynomial reduced modulo 2. One then only needs to show
that x4 + x + 1 is irreducible in (Z/2Z) [x]. There are no roots as one can
check by substituting 0 and 1 into the equation. To see it does not factor
as quadratics, use the method of undetermined coefficients. Since the co-
efficients must all be 0 or 1, it is particularly easy to check. Thus f(x) is
irreducible. �

2. Let F be a field and f(x) ∈ F [x]. If c ∈ F and f(x + c) is irreducible in
F [x], prove that f(x) is irreducible in F [x].

Proof: Suppose that f(x) is reducible, i.e., there exist nonconstant g(x), h(x) ∈
F [x] so that f(x) = g(x)h(x). In particular, then we have f(x + c) =
g(x + c)h(x + c). Note that g(x + c) and h(x + c) have the same degree at
g(x) and h(x); in particular, they are nonconstant polynomials. �

3. Let p be a prime. Prove that n

√
p /∈ Q for all integers n ≥ 2. (It may

help to look at the polynomial f(x) = xn − p.)

Proof: Note that f(x) = xn − p is irreducible over Q by Eisenstein’s crite-
rion applied with the prime p. If n

√
p ∈ Q, then we must have that f(x) has

a root in Q, so is reducible, a contradiction. �
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4. Show that there are infinitely many integers n such that f(x) = x9 +
12x5 − 21x + n is irreducible in Q[x].

Proof: Set n = 3 · 2k for k ∈ N. With this value of n we have that f(x)
is irreducible for infinitely many values of n by Eisenstein’s criterion with
p = 3. �

5. Prove that f(x) ∈ (Z/2Z) [x] has x+1 as a factor if and only if it has an
even number of nonzero coefficients.

Proof: Suppose x + 1 is a factor of f(x) = anxn + · · · + a1x + a0. This
means that f(1) = 0, i.e., an + · · · + a1 + a0 = 0. These are all 0’s and 1’s
since we are in Z/2Z, so we see this is 0 if and only if it is a multiple of 2,
i.e., if and only if there are an even number of nonzero terms. �

6. Prove that for any prime p, f(x) = xp−1 +xp−2 + · · ·+x+1 is irreducible
in Q[x].

Proof: Recall that one has the identity

xp − 1

x − 1
= xp−1 + · · · + x + 1.

We prove that f(x+1) is irreducible and then apply Problem 2 to conclude
that f(x) is irreducible. Note that

f(x + 1) =
(x + 1)p − 1

x

=
xp + pxp−1 + · · · + px

x
= xp−1 + pxp−2 + · · · + p.

Using that the binomial coefficients occurring above are all divisible by p, we
have that f(x+1) is irreducible by Eisenstein’s criterion applied with p. �.

7. In this problem you will show that the polynomial f(x) = x4 − 10x2 + 1
is irreducible in Q[x] but is reducible in (Z/pZ) [x] for every prime p.
(a) Prove that f(x) is irreducible in Q[x].

Proof: It is easy to see there are no rational roots by the Rational Root
Theorem. To see it does not factor as two quadratic terms we use the



3

method of undetermined coefficients. Suppose there are a, b, c, d ∈ Z so that
x4 − 10x2 + 1 = (x2 + ax + b)(x2 + cx + d). This leads to the equations

a + c = 0

d + b + ac = −10

ad + bc = 0

bd = 1.

This leads to the equations bd = 1, d + b− a2 = −10, and a(d− b) = 0 since
a = −c. Thus we have either a = 0 or b = d. Since bd = 1 we must have
b = d = 1 or b = d = −1. If a = 0 then d+b = −10, which is a contradiction.
If a 6= 0, then we have two possibilities. If b = d = 1 then a2 = 8, which
is a contradiction. Similarly, if b = d = −1 we get a contradiction. Thus it
must be that f(x) is irreducible in Q[x]. �

(b) Prove that f(x) is reducible in (Z/pZ) [x] for every prime p. It may
be helpful to use the method of undetermined coefficients along with the
following lemma, which you may use without proof:
Lemma: If neither 2 nor 3 is a square modulo p, then 6 is a square modulo p.

Proof: We need to determine how we can factor this polynomial modulo p
for each prime p. First we suppose that 2 is a square modulo p, i.e., there
is an α so that α2 = 2. Then our polynomial factors as

x4 − 10x2 + 1 = (x2 + 2αx − 1)(x2 − 2αx − 1).

Now if 3 is a square modulo p, i.e., there is a β so that β2 = 3, then we can
factor the polynomial as

x4 − 10x2 + 1 = (x2 + 2βx + 1)(x2 − 2βx + 1).

If neither 2 nor 3 is a square modulo p, then the lemma shows that 6 must
be a square modulo p, say γ2 = 6. In this case the polynomial factors as

x4 − 10x2 + 1 = (x2 − (5 + 2γ))(x2 − (5 − 2γ)).

Thus we see that f(x) is reducible modulo every prime p. �


