
Math 581 Problem Set 1 Solutions

1. Find the splitting field of f(x) = x4 − 4x2 − 5 over Q.

Observe that f(x) factors as

f(x) = (x2 − 5)(x2 + 1).

It is then easy to see that the roots of f(x) are given by ±
√

5 and ±i. Let
K be the splitting field of f(x).
Claim: K = Q(

√
5, i).

Proof: Observe that since K is by definition the smallest field that contains
all the roots of f(x) and Q(

√
5, i) contains all the roots of f(x), we must

have K ⊆ Q(
√

5, i). On the other hand, since K must contain all the roots
of f(x), it contains

√
5 and i and so must contain Q(

√
5, i). Thus we have

equality as claimed.

2. Let X be a finite set and f : X → X a function. Prove that f is injective
if and only if f is surjective.

Proof: Suppose f is injective. Then we assume that f is not surjective
and find a contradiction. Let x ∈ X be such that f(y) 6= x for any y ∈ X.
However, since each x ∈ X must go to an element of X, we must have two
elements in X mapping to the same element. (Note that it is important
X be finite for this to work!) This contradicts the injectivity. Thus if f is
injective, it must be surjective.
Now suppose that f is surjective but not injective. Let x, y ∈ X so that
f(x) = f(y) but x 6= y. This means that there are not enough elements
left to map to each element of X since we have essentially used two of them
to map to one element. Thus f cannot be surjective. Both of these are
examples of the pigeonhole principle. It states if you have N “pigeonholes”
and M > N pigeons, some pigeons must go into the same box. �

3. Let B be a set of n elements. Prove that the number of different injective
functions from B to B is n!. (Hint: induction may be helpful here!)

Proof: We proceed by induction on the number of elements of B. If n = 1
then there is only one possible function, sending the element to itself and so
the claim is true. Now suppose that for some positive integer k we know that
any set of k elements has precisely k! injective functions to itself. Let B be a



2

set of k +1 elements, say B = {b1, . . . , bk, bk+1}. We split the injective func-
tions into k +1 sets Ai where the functions in Ai are the injective functions
that send b1 to bi. The functions in the set A1 send b1 to b1, so are deter-
mined by what the function does on the set of k elements {b2, . . . , bk+1}.
Thus, by our induction hypothesis there are k! such functions. Similarly,
each set Ai has k! elements. Thus, when we count all the functions we have
k + 1 sets of k! elements, so (k + 1)k! = (k + 1)! different functions. Thus
the result is true by induction. �

4. Let a, b, c ∈ Z. If a|(b + c) and gcd(b, c) = 1, prove that gcd(a, b) = 1 =
gcd(a, c).

Proof: Suppose that gcd(a, b) = d > 1. Since a|(b + c) we have that there
exists an integer k so that ak = b + c. Since d|a and d|b this equation
gives that d|c. But then gcd(b, c) > 1, a contradiction. One proves that
gcd(a, c) = 1 in the same way. �

5. If 5|(a2 + b2 + c2), prove 5|a or 5|b or 5|c.

Proof: Since we are talking about divisibility by 5, we work modulo 5. The
fact that 5|(a2 + b2 + c2) means that a2 + b2 + c2 ≡ 0(mod 5). Observe that
the only possible squares modulo 5 are 0, 1, and 4. If one of a2, b2, or c2

is congruent to 0 modulo 5 then we have that 5 divides the square. Then
one uses that if a prime divides the square of a number it must divide the
number itself. Therefore we just need to show one of them is congruent to
0 modulo 5. To prove this, just consider all the possibilities of a2, b2, and
c2 being 1 or 4 and show that you can never add these up to get 0 modulo
5. �

6. Let a, n ∈ Z with n > 1. Prove that gcd(a, n) = 1 in Z if and only if the
equation ax = 1 in Z/nZ has a solution.

Proof: Suppose that gcd(a, n) = 1. There exists s, t ∈ Z so that 1 = as+nt.
Considering this equation in Z/nZ we see that s is a solution to the equation
ax = 1 in Z/nZ.
Now suppose there is a solution b of the equation ax = 1 in Z/nZ. This is
equivalent to the statement that n|ab− 1. Thus there exists a t ∈ Z so that
nt = ab − 1, i.e., 1 = ab + n(−t). If gcd(a, n) = d > 1, then d|a and d|n so
d|1, a contradiction. Thus gcd(a, n) = 1. �



3

7. Define a new addition and multiplication on Q by

r ⊕ s = r + s + 1

and
r � s = rs + r + s.

Prove that with these new operations Q is a commutative ring. Is it an
integral domain? (Note, this has new operations so is NOT a subring of
anything you know of, so you have to check ALL the properties of being a
ring.)

Proof: We begin by noting that the set Q is clearly closed under each of
these operations. Now one must check each property of being a ring.
Observe that −1 is the zero element for this ring: r ⊕−1 = r +−1 + 1 = r.
It is easy to see that the addition is commutative. The associativity of
addition is also clear. The additive inverse of an element r is given by
−2 − r: r ⊕ (−2 − r) = r + −2 − r + 1 = −1, which is the zero element of
the ring.
The multiplicative identity is given by 0: r � 0 = r · 0 + r + 0 = r. The fact
that the multiplication is commutative is clear, as is the associativity. (You
should be able to write down proofs though if asked!!!)
One needs to check the distributive properties as well. We check one here
and omit the other as they are analogous. We need to show that r�(s⊕t) =
r � s ⊕ r � t.

r � (s ⊕ t) = r � (s + t + 1)

= r(s + t + 1) + r + (s + t + 1)

= rs + rt + r + r + s + t + 1

= (rs + r + s) + (rt + r + t) + 1

= (r � s) ⊕ (r � t).

Thus we have shown this is a commutative ring. Now we need to determine
if there are any zero divisors. Suppose r and s are zero divisors, i.e., they
multiply together to give 0. In this ring that means that r � s = −1, i.e.,
rs + r + s = −1. Then manipulating this equation we must have:

r(s + 1) + s = −1

r(s + 1) = −1 − s

r = −1



4

i.e., r must already be zero. Thus there are no zero divisors. �

8. Let f(x), g(x), h(x) ∈ F [x], with f(x) and g(x) relatively prime. If
f(x)|h(x) and g(x)|h(x), prove that f(x)g(x)|h(x).

Proof: The fact that f(x)|h(x) implies that there exists an s(x) so that
h(x) = f(x)s(x) and similarly one has t(x) so that h(x) = g(x)t(x). Since
f(x) and g(x) are assumed to be relatively prime, there exists a(x) and b(x)
so that 1 = f(x)a(x) + g(x)b(x). Multiply both sides of this equation by
h(x). Then we have

h(x) = f(x)a(x)h(x) + g(x)b(x)h(x)

= f(x)a(x)g(x)t(x) + g(x)b(x)f(x)s(x)

= f(x)g(x)[a(x)t(x) + b(x)s(x)].

Thus we have that f(x)g(x)|h(x). �

9. Show that x − 1F divides anxn + · · · + a1x + a0 in F [x] if and only if
a0 + a1 + · · · + an = 0F .

Proof: Suppose that x−1F divides anxn+· · ·+a1x+a0. Then we know that
1F is a root of anxn+· · ·+a1x+a0, which means that a0+a1+· · ·+an = 0F .
Now suppose that a0 + a1 + · · · + an = 0F . Then we have that 1F is a root
of anxn + · · · + a1x + a0 and so x − 1F divides anxn + · · · + a1x + a0. �


