Math 581 Problem Set 1

1. Find the splitting field of $f(x) = x^4 - 4x^2 - 5$ over \mathbb{Q} .

2. Let X be a finite set and $f: X \to X$ a function. Prove that f is injective if and only if f is surjective.

3. Let B be a set of n elements. Prove that the number of different injective functions from B to B is n!. (Hint: induction may be helpful here!)

4. Let $a, b, c \in \mathbb{Z}$. If a|(b+c) and gcd(b, c) = 1, prove that gcd(a, b) = 1 = gcd(a, c).

5. If $5|(a^2 + b^2 + c^2)$, prove 5|a or 5|b or 5|c.

6. Let $a, n \in \mathbb{Z}$ with n > 1. Prove that gcd(a, n) = 1 in \mathbb{Z} if and only if the equation $\overline{ax} = \overline{1}$ in $\mathbb{Z}/n\mathbb{Z}$ has a solution.

7. Define a new addition and multiplication on \mathbb{Q} by

$$r \oplus s = r + s + 1$$

and

$$r \odot s = rs + r + s.$$

Prove that with these new operations \mathbb{Q} is a commutative ring. Is it an integral domain? (Note, this has new operations so is NOT a subring of anything you know of, so you have to check ALL the properties of being a ring.)

8. Let $f(x), g(x), h(x) \in F[x]$, with f(x) and g(x) relatively prime. If f(x)|h(x) and g(x)|h(x), prove that f(x)g(x)|h(x).

9. Show that $x - 1_F$ divides $a_n x^n + \cdots + a_1 x + a_0$ in F[x] if and only if $a_0 + a_1 + \cdots + a_n = 0_F$.