MATH 581 — SECOND MIDTERM EXAM May 12, 2006

NAME: Solutions

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 9 pages including this cover. There are 9 problems.
- 3. Do not separate the pages of the exam.
- 4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
- 5. If you are unsure whether you can quote a result from class or the book, please ask.
- 6. Please turn **off** all cell phones.

PROBLEM	POINTS	SCORE
1	12	
2	12	
3	5	
4	5	
5	16	
6	12	
7	12	
8	10	
9	16	
TOTAL	100	

1. (3 points each) (a) Give a basis of $\mathbb{Q}[\sqrt{5}]$ over \mathbb{Q} . What is $[\mathbb{Q}[\sqrt{5}] : \mathbb{Q}]$? You do not need to prove it is a basis.

A basis is given by $\{1, \sqrt{5}\}$ and $[\mathbb{Q}[\sqrt{5}] : \mathbb{Q}] = 2$.

(b) Prove that $\sqrt{7} \notin \mathbb{Q}[\sqrt{5}]$.

Proof: Suppose $\sqrt{7} \in \mathbb{Q}[\sqrt{5}]$, i.e., there exists $a, b \in \mathbb{Q}$ such that $\sqrt{7} = a + b\sqrt{5}$. We then have $(\sqrt{7} - b\sqrt{5})^2 = a^2$. Rearranging this we have $2b\sqrt{35} = 7 + 5b^2 - a^2$. Note that $b \neq 0$ for otherwise we'd have $\sqrt{7} \in \mathbb{Q}$ which we know it is not $(x^2 - 7)$ is irreducible by Eisenstein with p = 7. Thus we have $\sqrt{35} = \frac{1}{2b}(7 + 5b^2 - a^2) \in \mathbb{Q}$. However, $\sqrt{35} \notin \mathbb{Q}$ since $x^2 - 25$ is irreducible over \mathbb{Q} by Eisenstein with p = 7. Thus, it must be that $\sqrt{7} \notin \mathbb{Q}[\sqrt{5}]$.

(c) Give a basis of $\mathbb{Q}[\sqrt{7}, \sqrt{5}]$ over $\mathbb{Q}[\sqrt{5}]$. What is $[\mathbb{Q}[\sqrt{7}, \sqrt{5}] : \mathbb{Q}[\sqrt{5}]]$? You do not need to prove it is a basis.

We know from part (b) that $[\mathbb{Q}[\sqrt{7}, \sqrt{5}] : \mathbb{Q}[\sqrt{5}]] = 2$. A basis is given by $\{1, \sqrt{7}\}$.

(d) Give a basis of $\mathbb{Q}[\sqrt{5}, \sqrt{7}]$ over \mathbb{Q} . What is $[\mathbb{Q}[\sqrt{5}, \sqrt{7}] : \mathbb{Q}]$? You do not need to prove it is a basis.

A basis is given by $\{1, \sqrt{5}, \sqrt{7}, \sqrt{35}\}$ and $[\mathbb{Q}[\sqrt{5}, \sqrt{7}] : \mathbb{Q}] = 4$.

2. (3 points each) Let V be a vector space over a field F and $\{v_1, \ldots, v_n\}$ a subset of V.

(a) Define what it means for $\{v_1, \ldots, v_n\}$ to be linearly independent.

See your textbook.

(b) Define what it means for $\{v_1, \ldots, v_n\}$ to span V.

See your textbook.

(c) Give a basis of \mathbb{R}^3 as a vector space over \mathbb{R} . Be sure to prove your answer is actually a basis!

Proof: A basis of \mathbb{R}^3 is given by {(1,0,0), (0,1,0), (0,0,1)}. Let $(x, y, z) \in \mathbb{R}^3$. Then (x, y, z) = x(1,0,0) + y(0,1,0) + z(0,0,1), so the set is a spanning set. To see it is linearly independent, suppose a(1,0,0) + b(0,1,0) + c(0,0,1) = (0,0,0), i.e., (a,b,c) = (0,0,0). It is now clear that a = b = c = 0 and thus the set is linearly independent as well. ■

(b) Prove that if $\{v_1, v_2, v_3, v_4\}$ is linearly independent in V, then so is $\{v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4\}$.

Proof: Suppose there exists $a, b, c, d \in F$ such that $a(v_1 - v_2) + b(v_2 - v_3) + c(v_3 - v_4) + dv_4 = 0$. Rearranging this we have the equation

$$av_1 + (b-a)v_2 + (c-b)v_3 + (d-c)v_4 = 0.$$

Using that $\{v_1, v_2, v_3, v_4\}$ is linearly independent over F gives that a = b - a = c - b = d - c = 0. This gives a = 0, which in turn gives b - 0 = 0, i.e., b = 0. Similarly we get c = 0 and d = 0 and thus the set is linearly independent as claimed. **3.** (5 points) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 5 with no roots in \mathbb{Q} . (Note, we do NOT assume f(x) is irreducible!!!) Let α be a root of f(x). What are the possible values of $[\mathbb{Q}[\alpha] : \mathbb{Q}]$?

Suppose we factor f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Q}[x]$. Since we assume that f(x) has no roots in \mathbb{Q} there are only two possibilities for the degrees of g(x) and h(x) if f(x) is reducible. We could have deg g(x) = 2 and deg h(x) = 3 or deg g(x) = 3 and deg h(x) = 2. If either one had degree 1 we would have a root in \mathbb{Q} . If either one had degree 4 it would force the other to have degree 1 and give a root in \mathbb{Q} . Thus, the possibilities of $[\mathbb{Q}[\alpha] : \mathbb{Q}]$ are 5 (if f(x) is irreducible), 2, and 3 (if f(x) is reducible).

4. (5 points) Prove either (a) OR (b). Indicate clearly which one you would like me to grade. (a) Let R be a commutative ring. Prove that the ideal $\langle x \rangle$ in the polynomial ring R[x] is a maximal ideal if and only if R is a field.

(b) Let $\phi : R \to S$ be a surjective homomorphism of commutative rings and let \wp be a prime ideal in R. Prove that $\phi(\wp)$ is a prime ideal of S. (You may quote the homework problem that $\phi(\wp)$ is an ideal!)

Proof (a): Recall that \mathfrak{m} is a maximal ideal in a ring S if and only if S/\mathfrak{m} is a field. Applying this to this problem we see that $\langle x \rangle$ is a maximal ideal in R[x] if and only if $R[x]/\langle x \rangle$ is a field. However, we know that $R[x]/\langle x \rangle$ is isomorphic to R under the First Isomorphism Theorem (use the map $R[x] \to R$ by $f(x) \mapsto f(0)$). Thus, $\langle x \rangle$ is a maximal ideal in R[x] if and only if R is a field.

Proof (b): Let $ab \in \phi(\wp)$. Using that ϕ is surjective we have that there exists $c, d \in R$ such that $\phi(c) = a$ and $\phi(d) = b$. Thus we have that $\phi(cd) = \phi(c)\phi(d) \in \phi(\wp)$. Thus we have $cd \in \wp$ by definition of $\phi(\wp)$. Since \wp is a prime ideal we have that $c \in \wp$ or $d \in \wp$. But then $\phi(c) \in \phi(\wp)$ or $\phi(d) \in \phi(\wp)$. Thus, $\phi(\wp)$ is a prime ideal.

- **5.** (3+3+4+6 points) Consider the finite field $\mathbb{F}_{7^{36}}$.
- (a) How many elements are in $\mathbb{F}_{7^{36}}$?.

There are 7^{36} elements in this finite field.

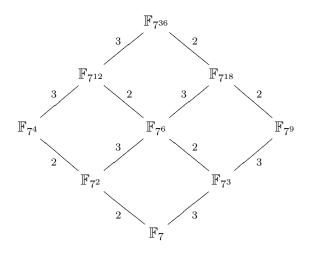
(b) What is the dimension of $\mathbb{F}_{7^{36}}$ as a vector space over $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$?

The dimension is 36.

(c) Is $\mathbb{F}_{7^{36}} \cong \mathbb{Z}/7^{36}\mathbb{Z}$? Justify your answer!

They are NOT isomorphic. The ring $\mathbb{Z}/7^{36}\mathbb{Z}$ is not even a field as 7^{36} is NOT a prime number.

(d) Arrange the subfields of $\mathbb{F}_{7^{36}}$ into a diagram showing containment between the subfields. Be sure to label the diagram indicating the degrees of the extensions.



6. (4 points each) (a) Show that the number $\sqrt[7]{2}$ is not constructible with straightedge and compass.

Proof: Note that $\sqrt[7]{2}$ is a root of $f(x) = x^7 - 2$, which is irreducible over \mathbb{Q} by Eisenstein with p = 2. Thus, $[\mathbb{Q}[\sqrt[7]{2}] : \mathbb{Q}] = 7$. Since 7 is not a power of 2, it must be that $\sqrt[7]{2}$ is not a constructible number.

(b) Show it is possible to construct a regular 12-gon with straightedge and compass.

Proof: Recall it is possible to construct a regular *n*-gon if and only if one can construct the angle $\frac{2\pi}{n}$ which is possible if and only if $\cos \frac{2\pi}{n}$ and $\sin \frac{2\pi}{n}$ are constructible numbers. Observe that $\cos \frac{2\pi}{12} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$. Since all integers are constructible and we can take square roots of constructible numbers to get a constructible number, we use the fact that the constructible numbers form a field to conclude $\frac{\sqrt{3}}{2}$ is constructible. Similarly, $\sin \frac{2\pi}{12} = \frac{1}{2}$ so is constructible as well. Thus, it is possible to construct a regular 12-gon.

(c) Show it is impossible to square the circle, i.e., show it is not possible to construct (with a straightedge and compass) a square that has the same area as a circle of radius 1.

Proof: In order to construct such a square we would need to be able to construct a square with area π . Thus, we would need to be able to construct $\sqrt{\pi}$. However, $[\mathbb{Q}[\sqrt{\pi}] : \mathbb{Q}]$ is not finite, let alone finite and a power of 2! Thus, $\sqrt{\pi}$ is NOT a constructible number.

7. (4 points each) Let $F \subseteq K$ be a finite field extension with $\alpha \in K$ but $\alpha \notin F$.

(a) Prove that $F[\alpha^2] \subseteq F[\alpha]$.

Proof: It is enough to show that $\alpha^2 \in F[\alpha]$, but this is clear as $\alpha \in F[\alpha]$ and so α^2 is as well since $F[\alpha]$ is closed under multiplication.

(b) Find a polynomial $f(x) \in F[\alpha^2][x]$ so that $f(\alpha) = 0$. What are the possibilities for $[F[\alpha] : F[\alpha^2]]$?

Note that $f(x) = x^2 - \alpha^2 \in F[\alpha^2][x]$ and $f(\alpha) = 0$. This shows that $[F[\alpha] : F[\alpha^2]] = 1$ or 2 depending on whether f(x) is irreducible or not.

(c) Prove that if $[F[\alpha] : F]$ is odd, then $F[\alpha^2] = F[\alpha]$.

Proof: Observe that we have $F \subseteq F[\alpha^2] \subseteq F[\alpha]$. If $[F[\alpha] : F]$ is odd, this means that $[F[\alpha] : F[\alpha^2]]$ must divide an odd number. However, we showed in part (b) that $[F[\alpha] : F[\alpha^2]]$ must be 1 or 2. Since 2 cannot divide an odd number it must be that $[F[\alpha] : F[\alpha^2]] = 1$ and thus $F[\alpha] = F[\alpha^2]$.

8. (5 points each) Let $F \subseteq K$ be a finite field extension such that [K:F] = n. Let $\alpha \in K$ so that $\alpha \notin F$. In this problem you will show that α is algebraic, i.e., there is a polynomial $f(x) \in F[x]$ so that $f(\alpha) = 0$. So do NOT assume such a polynomial exists to do any proofs in this problem!

(a) Prove that $\{1, \alpha, ..., \alpha^n\}$ must be linearly dependent over F. (Hint: How many elements are in this set?)

Proof: There are n + 1 elements in this set. Since [K : F] = n, a basis contains exactly n elements. We know that a linearly independent set must have less elements then a basis, thus it must be that the set is linearly dependent.

(b) Use part (a) to prove that there exists $f(x) \in F[x]$ so that $f(\alpha) = 0$.

Proof: We know that $\{1, \alpha, \ldots, \alpha^n\}$ is a linearly dependent set. Thus there exists $a_i \in F$ so that

$$a_0 + a_1 \alpha + \dots + a_n \alpha^n = 0.$$

Set $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$. Then $f(\alpha) = 0$ by construction.

9. (4 points each) Let p be a prime number and ω a p^{th} root of unity.

(a) Prove that $[\mathbb{Q}[\sqrt[p]{3}] : \mathbb{Q}] = p$.

Proof: Let $f(x) = x^p - 3$. Then f(x) is irreducible over \mathbb{Q} by Eisenstein with the prime 3. Thus, $[\mathbb{Q}[\sqrt[p]{3}] : \mathbb{Q}] = p$.

(b) Prove that $[\mathbb{Q}[\omega] : \mathbb{Q}] = p - 1$.

Proof: Here we use that ω is a root of the irreducible polynomial $g(x) = x^{p-1} + cdots + x + 1$. Thus, $[\mathbb{Q}[\omega] : \mathbb{Q}] = p - 1$. (c) Prove that $[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}] = p(p-1)$. You are not allowed to quote any results that make this part trivial. (Hint: gcd(p, p-1) = 1) (You may use the back of this page if you need more space)

Proof: Since $\mathbb{Q}[\sqrt[p]{3}]$ and $\mathbb{Q}[\omega]$ are both subfields of $\mathbb{Q}[\omega, \sqrt[p]{3}]$ we have that $p|[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}]$ and $p-1|[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}]$. Using that p and p-1 are relatively prime we have that p(p-1) is the least common multiple of p and p-1 and thus p(p-1) divides $[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}]$. Now observe that since ω is a root of g(x) with degree p-1, it must be that $[\mathbb{Q}[\sqrt[p]{3}, \omega] : \mathbb{Q}[\sqrt[p]{3}]] \le p-1$ since the extension can be at most p-1 if g(x) is irreducible over $\mathbb{Q}[\sqrt[p]{3}]$ and is less if g(x) factors. Thus, $[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}] \le p(p-1)$. But we had the inequality in the other direction since $p(p-1)|[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}]$ above, thus we must have equality.

(d) Use part (c) to conclude that $f(x) = x^p - 3$ is irreducible over $\mathbb{Q}[\omega]$. (This is a very difficult fact to prove by any other method!)

Proof: Note our proof shows that we must have $[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}[\omega]] = p$. Thus, it must be that $x^p - 3$ remains irreducible over $\mathbb{Q}[\omega]$ or we would get a smaller extension.