MATH 581 — SECOND MIDTERM EXAM

May 12, 2006

NAME:

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 9 pages including this cover. There are 9 problems.
- 3. Do not separate the pages of the exam.
- 4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
- 5. If you are unsure whether you can quote a result from class or the book, please ask.
- 6. Please turn **off** all cell phones.

PROBLEM	POINTS	SCORE
1	12	
2	12	
3	5	
4	5	
5	16	
6	12	
7	12	
8	10	
9	16	
TOTAL	100	

1. (3 points each) (a) Give a basis of $\mathbb{Q}[\sqrt{5}]$ over \mathbb{Q} . What is $[\mathbb{Q}[\sqrt{5}] : \mathbb{Q}]$? You do not need to prove it is a basis.

(b) Prove that $\sqrt{7} \notin \mathbb{Q}[\sqrt{5}]$.

(c) Give a basis of $\mathbb{Q}[\sqrt{7}, \sqrt{5}]$ over $\mathbb{Q}[\sqrt{5}]$. What is $[\mathbb{Q}[\sqrt{7}, \sqrt{5}] : \mathbb{Q}[\sqrt{5}]]$? You do not need to prove it is a basis.

(d) Give a basis of $\mathbb{Q}[\sqrt{5}, \sqrt{7}]$ over \mathbb{Q} . What is $[\mathbb{Q}[\sqrt{5}, \sqrt{7}] : \mathbb{Q}]$? You do not need to prove it is a basis.

- **2.** (3 points each) Let V be a vector space over a field F and $\{v_1, \ldots, v_n\}$ a subset of V.
- (a) Define what it means for $\{v_1, \ldots, v_n\}$ to be linearly independent.

(b) Define what it means for $\{v_1, \ldots, v_n\}$ to span V.

(c) Give a basis of \mathbb{R}^3 as a vector space over \mathbb{R} . Be sure to prove your answer is actually a basis!

(b) Prove that if $\{v_1, v_2, v_3, v_4\}$ is linearly independent in V, then so is $\{v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4\}$.

3. (5 points) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 5 with no roots in \mathbb{Q} . (Note, we do NOT assume f(x) is irreducible!!!) Let α be a root of f(x). What are the possible values of $[\mathbb{Q}[\alpha] : \mathbb{Q}]$?

4. (5 points) Prove either (a) OR (b). Indicate clearly which one you would like me to grade. (a) Let R be a commutative ring. Prove that the ideal $\langle x \rangle$ in the polynomial ring R[x] is a maximal ideal if and only if R is a field.

(b) Let $\phi : R \to S$ be a surjective homomorphism of commutative rings and let \wp be a prime ideal in R. Prove that $\phi(\wp)$ is a prime ideal of S. (You may quote the homework problem that $\phi(\wp)$ is an ideal!)

- **5.** (3+3+4+6 points) Consider the finite field $\mathbb{F}_{7^{36}}$.
- (a) How many elements are in $\mathbb{F}_{7^{36}}$?.
- (b) What is the dimension of $\mathbb{F}_{7^{36}}$ as a vector space over $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$?
- (c) Is $\mathbb{F}_{7^{36}} \cong \mathbb{Z}/7^{36}\mathbb{Z}$? Justify your answer!

(d) Arrange the subfields of $\mathbb{F}_{7^{36}}$ into a diagram showing containment between the subfields. Be sure to label the diagram indicating the degrees of the extensions.

6. (4 points each) (a) Show that the number $\sqrt[7]{2}$ is not constructible with straightedge and compass.

(b) Show it is possible to construct a regular 12-gon with straightedge and compass.

(c) Show it is impossible to square the circle, i.e., show it is not possible to construct (with a straightedge and compass) a square that has the same area as a circle of radius 1.

- **7.** (4 points each) Let $F \subseteq K$ be a finite field extension with $\alpha \in K$ but $\alpha \notin F$.
- (a) Prove that $F[\alpha^2] \subseteq F[\alpha]$.

(b) Find a polynomial $f(x) \in F[\alpha^2][x]$ so that $f(\alpha) = 0$. What are the possibilities for $[F[\alpha] : F[\alpha^2]]$?

(c) Prove that if $[F[\alpha] : F]$ is odd, then $F[\alpha^2] = F[\alpha]$.

8. (5 points each) Let $F \subseteq K$ be a finite field extension such that [K : F] = n. Let $\alpha \in K$ so that $\alpha \notin F$. In this problem you will show that α is algebraic, i.e., there is a polynomial $f(x) \in F[x]$ so that $f(\alpha) = 0$. So do NOT assume such a polynomial exists to do any proofs in this problem!

(a) Prove that $\{1, \alpha, \ldots, \alpha^n\}$ must be linearly dependent over F. (Hint: How many elements are in this set?)

(b) Use part (a) to prove that there exists $f(x) \in F[x]$ so that $f(\alpha) = 0$.

- **9.** (4 points each) Let p be a prime number and ω a p^{th} root of unity.
- (a) Prove that $[\mathbb{Q}[\sqrt[p]{3}]:\mathbb{Q}] = p.$

(b) Prove that $[\mathbb{Q}[\omega] : \mathbb{Q}] = p - 1$.

(c) Prove that $[\mathbb{Q}[\omega, \sqrt[p]{3}] : \mathbb{Q}] = p(p-1)$. You are not allowed to quote any results that make this part trivial. (Hint: gcd(p, p-1) = 1) (You may use the back of this page if you need more space)

(d) Use part (c) to conclude that $f(x) = x^p - 3$ is irreducible over $\mathbb{Q}[\omega]$. (This is a very difficult fact to prove by any other method!)