MATH 581 — FIRST MIDTERM EXAM April 21, 2006

NAME: Solutions

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 9 pages including this cover. There are 10 problems.
- 3. Do not separate the pages of the exam.
- 4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
- 5. If you are unsure whether you can quote a result from class or the book, please ask.
- 6. Please turn off all cell phones.

1. Throughout this problem R and S are commutative rings and F is a field.

(a) Define what it means for $I \subset R$ to be an ideal.

The set $I \subset R$ is an ideal if it is nonempty, for every $a, b \in I$ one has $a + b \in I$, and for every $r \in R$ and $a \in I$ one has $ar \in I$.

(b) Define what it means for $f(x) \in F[x]$ to be irreducible.

The polynomial $f(x)$ is irreducible if whenever one has $f(x) = g(x)h(x)$ for $g(x), h(x) \in F[x]$, then $g(x)$ or $h(x)$ must be a constant polynomial.

(c) Give an example of a reducible polynomial $f(x) \in \mathbb{Q}[x]$ that has no roots in \mathbb{Q} .

Let $g(x) = (x^2 + 1)^2$. This polynomial has no roots in Q (or even R for that matter) but is clearly reducible.

(e) Let $a \in R$. Define $\langle a \rangle$.

$$
\langle a \rangle = \{ ar : r \in R \}.
$$

2. Let $\phi: R \to S$ be a ring homomorphism between two commutative rings.

(a) Define ker ϕ .

$$
\ker \phi = \{ r \in R : \phi(r) = 0_S \}.
$$

(b) Prove that ker ϕ is an ideal of R.

Proof: First observe that $0_R \in \text{ker } \phi$ since ϕ is a homomorphism. Let $a, b \in \text{ker } \phi$. Then $\phi(a + b) = \phi(a) + \phi(b) = 0_S + 0_S = 0_S$. Thus, $a + b \in \text{ker }\phi$. Let $r \in R$. Then we have $\phi(ra) = \phi(r)\phi(a) = \phi(r)\cdot 0_S = 0_S$. Thus, $ra \in \text{ker }\phi$. Hence we have that $\text{ker }\phi$ is an ideal.

3. (a) Prove that if $I \subset R$ is an ideal and I contains a unit, then $I = R$.

Proof: Let u be the unit in I and $v \in R$ so that $vu = 1_R$. Let $r \in R$. By the definition of ideal, since $u \in I$, then $rv \cdot u = r \cdot 1_R = r$ is in I. Thus $I = R$.

(b) Let F be a field. Prove that the only ideals in F are $\langle 0_F \rangle$ and F.

Proof: Let $I \subset F$ be a field. First, it is clear that $\langle 0_R \rangle$ is an ideal in F. If $I \neq \langle 0_F \rangle$, then there exists a non-zero element in I . Since F is a field, this non-zero element must be a unit and hence $I = F$ by part (a).

4. Let I and J be ideals in R. Prove that $I \cap J$ is an ideal in R.

Proof: Since I and J are ideals in R, each one contains 0_R and hence $0_R \in I \cap J$ which shows it is non-empty. Let $a, b \in I \cap J$. Thus $a, b \in I$ and $a, b \in J$. Since I and J are ideals, $a + b \in I$ and $a + b \in J$. Thus $a + b \in I \cap J$. Let $r \in R$. Then $ar \in I$ and $ar \in J$ since I and J are ideals. Thus, $ar \in I \cap J$. Hence we see $I \cap J$ is an ideal. ■

5. Prove that the map $\phi : \mathbb{Q}[\sqrt{7}] \to \mathbb{Q}[\sqrt{7}]$ given by $\phi(a + b\sqrt{7}) = a - b\sqrt{7}$ is an isomorphism.

Proof: Observe that $\phi(1) = 1$. Let $a + b\sqrt{7}$, $c + d\sqrt{7} \in \mathbb{Q}[\sqrt{7}]$. It is then easy to see ϕ is a homomorphism:

$$
\begin{array}{rcl}\n\phi((a+b\sqrt{7})+(c+d\sqrt{7})) & = & \phi((a+c)+(b+d)\sqrt{7}) \\
& = & (a+c)-(b+d)\sqrt{7} \\
& = & (a-b\sqrt{7})+(c-d\sqrt{7}) \\
& = & \phi(a+b\sqrt{7})+\phi(c+d\sqrt{7})\n\end{array}
$$

and

$$
\begin{array}{rcl}\n\phi((a+b\sqrt{7})\cdot(c+d\sqrt{7})) & = & \phi((ac+7bd)+(ad+bc)\sqrt{7}) \\
& = & (ac+7bd)-(ad+bc)\sqrt{7} \\
& = & (a-b\sqrt{7})\cdot(c-d\sqrt{7}) \\
& = & \phi(a+b\sqrt{7})\phi(c+d\sqrt{7}).\n\end{array}
$$

To see ϕ is surjective, observe that $\phi(a - b\sqrt{7}) = a + b\sqrt{7}$. It is clear ϕ is injective by observing that $\phi(a + b\sqrt{7}) = 0$ if and only if $a = b = 0$. Thus, we have that ϕ is an isomorphism.

4

6. Prove that the composition of two isomorphisms is again an isomorphism. (You may NOT quote any results about composition of functions from Math 580!)

Proof: Let $f: R \to S$ and $g: \to T$ be two isomorphisms. Then we wish to show $h = g \circ f: R \to T$ is an isomorphism. First observe that $h(1_R) = g(f(1_R)) = g(1_S) = 1_T$. Let $a, b \in R$. We have

$$
h(a+b) = g(f(a+b))
$$

= $g(f(a) + f(b))$
= $g(f(a)) + g(f(b))$
= $h(a) + h(b)$

where we have used that f and g are homomorphisms. As for the multiplicative structure, we have

$$
h(ab) = g(f(ab))
$$

= $g(f(a)f(b))$
= $g(f(a))g(f(b))$
= $h(a)h(b)$

where we again have used that f and q are homomorphisms. Thus we have that h is a homomorphism. Now we need to see that h is injective and surjective. We show injectivity by showing the kernel is $\langle 0_R \rangle$. Let $r \in \text{ker } h$. Then $g(f(r)) = 0_T$. Since g is injective we must have $f(r) = 0_S$. Since f is injective we must have $r = 0_R$, as claimed. Now to show h is surjective, let $t \in T$. Since g is surjective there exists a $s \in S$ so that $g(s) = t$. Since f is surjective there exists a $r \in R$ so that $f(r) = s$. Thus we have $h(r) = t$ and hence h is surjective. We have shown that h is an isomorphism as claimed.

7. Prove that $\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \mathbb{C}$.

Proof: We use the first isomorphism theorem to prove this result. Define $\phi : \mathbb{R}[x] \to \mathbb{C}$ by $\phi(f(x)) = f(i)$. It is clear that this map is surjective, for instance, $\phi(a + bx) = a + bi$. Note that $\phi(1) = 1$. To see that ϕ respects the additive and multiplicative structures, observe that we have

$$
\begin{array}{rcl}\n\phi(f(x) + g(x)) & = & f(i) + g(i) \\
& = & \phi(f(x)) + \phi(g(x))\n\end{array}
$$

and

$$
\begin{array}{rcl}\n\phi(f(x)g(x)) & = & f(i)g(i) \\
& = & \phi(f(x))\phi(g(x)).\n\end{array}
$$

Thus we see ϕ is an onto homomorphism from $\mathbb{R}[x]$ to C. It is clear that $\langle x^2 + 1 \rangle \subset \ker \phi$. The fact that $\mathbb{R}[x]$ is a PID and $x^2 + 1$ is irreducible over $\mathbb{R}[x]$ then gives that ker $\phi = \langle x^2 + 1 \rangle$. Thus, the first isomorphism theorem allows us to conclude that $\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \mathbb{C}$.

8. Prove that $\sqrt[5]{\frac{17}{25}}$ is not a rational number. (It may be helpful to consider the polynomial $f(x) = 25x^5 - 17.$

Proof: Consider the polynomial $f(x) = 25x^5 - 17$. Note that this polynomial is irreducible over Q by Eisenstein applied with $p = 17$. If $\sqrt[5]{\frac{17}{25}}$ were in Q, then $f(x)$ would necessarily be reducible as it would have a root in \mathbb{Q} . Thus it must be that $\sqrt[5]{\frac{17}{25}} \notin \mathbb{Q}$.

9. Let $\phi: R \to S$ be an homomorphism between commutative rings.

(a) Define the image of ϕ , i.e., $\phi(R)$.

$$
\phi(R) = \{\phi(r) : r \in R\}.
$$

(b) Prove that $\phi(R)$ is a subring of S.

Proof: First observe that since ϕ is a homomorphism, 0_S and 1_S are both in $\phi(R)$. Let $\phi(a)$ and $\phi(b)$ be in $\phi(R)$. Using that ϕ is a homomorphism, $\phi(a) + \phi(b) = \phi(a+b) \in \phi(R)$. Thus $\phi(R)$ is closed under addition. Again using ϕ is a homomorphism we have $\phi(a)\phi(b) = \phi(ab) \in \phi(R)$ and so $\phi(R)$ is closed under multiplication. It only remains to show that $-\phi(a) \in \phi(R)$. However, we know that $-\phi(a) = \phi(-a)$ since ϕ is a homomorphism, so this is clear as well. Thus $\phi(R)$ is a subring of S .

(d) Prove that if R is a field, then $\phi(R)$ is a field. (Problem 2(b) may be helpful here!)

Proof: Note that we have $\phi: R \to \phi(R)$ by the definition of $\phi(R)$ and moreover this is now a surjective homomorphism. The first isomorphism theorem now tells us that $R/\text{ker }\phi \cong \phi(R)$, so it only remains to determine the possibilities for ker ϕ . Since ϕ is a homomorphism, we know $\phi(1_R) = 1_S$, so in particular $1_R \notin \text{ker }\phi$. Thus, $\text{ker }\phi \neq R$. Now by problem 2(b) the only other possibility is for ker $\phi = \langle 0_R \rangle$. Thus we have $R \cong \phi(R)$ and hence $\phi(R)$ is a field. \blacksquare

10. An ideal \wp in a commutative ring R is said to be a *prime ideal* if $\wp \neq R$ and whenever $ab \in \wp$, then $a \in \wp$ or $b \in \wp$.

(a) Let $p \in \mathbb{Z}$ be a prime number. Show that $\langle p \rangle$ is a prime ideal.

Proof: Let $bc \in \langle p \rangle$. This means that p|bc. However, using that p is a prime we have that p|b or $p|c$ and thus either $b \in \langle p \rangle$ or $c \in \langle p \rangle$ as desired. ■

(b) Show that if \wp is a prime ideal, then R/\wp is an integral domain.

Proof: Since R is a commutative ring, it only remains to show that there are no zero-divisors in R/φ . Suppose that there exists \overline{a} and \overline{b} in R/φ so that $\overline{a} \cdot \overline{b} = \overline{0}$. In particular, this is equivalent to the fact that $ab \in \wp$. However, since \wp is a prime ideal, it must be that a or b is in \wp , i.e., \overline{a} or \overline{b} is $\overline{0}$. Thus there are no zero-divisors and hence R/φ is an integral domain.

(c) Show that if R/\wp is an integral domain, then \wp is a prime ideal.

Proof: Suppose R/\wp is an integral domain and let $ab \in \wp$. Then we have that $\overline{ab} = \overline{a} \cdot \overline{b} = \overline{0}$. However, using that R/\wp is an integral domain shows that either \overline{a} or \overline{b} is $\overline{0}$, i.e., $a \in \wp$ or $b \in \wp$. Thus \wp is a prime ideal.