
MATH 581 — FIRST MIDTERM EXAM

April 21, 2006

NAME: Solutions

1. Do not open this exam until you are told to begin.

2. This exam has 9 pages including this cover. There are 10 problems.

3. Do not separate the pages of the exam.

4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.

5. If you are unsure whether you can quote a result from class or the book, please ask.

6. Please turn off all cell phones.
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1. Throughout this problem R and S are commutative rings and F is a field.

(a) Define what it means for I ⊂ R to be an ideal.

The set I ⊂ R is an ideal if it is nonempty, for every a, b ∈ I one has a + b ∈ I, and for every
r ∈ R and a ∈ I one has ar ∈ I.

(b) Define what it means for f(x) ∈ F [x] to be irreducible.

The polynomial f(x) is irreducible if whenever one has f(x) = g(x)h(x) for g(x), h(x) ∈ F [x],
then g(x) or h(x) must be a constant polynomial.

(c) Give an example of a reducible polynomial f(x) ∈ Q[x] that has no roots in Q.

Let g(x) = (x2 +1)2. This polynomial has no roots in Q (or even R for that matter) but is clearly
reducible.

(e) Let a ∈ R. Define 〈a〉.

〈a〉 = {ar : r ∈ R}.

2. Let φ : R → S be a ring homomorphism between two commutative rings.

(a) Define ker φ.

ker φ = {r ∈ R : φ(r) = 0S}.

(b) Prove that ker φ is an ideal of R.

Proof: First observe that 0R ∈ kerφ since φ is a homomorphism. Let a, b ∈ kerφ. Then
φ(a + b) = φ(a) + φ(b) = 0S + 0S = 0S . Thus, a + b ∈ kerφ. Let r ∈ R. Then we have
φ(ra) = φ(r)φ(a) = φ(r) · 0S = 0S . Thus, ra ∈ ker φ. Hence we have that ker φ is an ideal. �.

3. (a) Prove that if I ⊂ R is an ideal and I contains a unit, then I = R.

Proof: Let u be the unit in I and v ∈ R so that vu = 1R. Let r ∈ R. By the definition of ideal,
since u ∈ I, then rv · u = r · 1R = r is in I. Thus I = R. �

(b) Let F be a field. Prove that the only ideals in F are 〈0F 〉 and F .

Proof: Let I ⊂ F be a field. First, it is clear that 〈0R〉 is an ideal in F . If I 6= 〈0F 〉, then there
exists a non-zero element in I. Since F is a field, this non-zero element must be a unit and hence
I = F by part (a). �
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4. Let I and J be ideals in R. Prove that I ∩ J is an ideal in R.

Proof: Since I and J are ideals in R, each one contains 0R and hence 0R ∈ I ∩ J which shows
it is non-empty. Let a, b ∈ I ∩ J . Thus a, b ∈ I and a, b ∈ J . Since I and J are ideals, a + b ∈ I
and a + b ∈ J . Thus a + b ∈ I ∩ J . Let r ∈ R. Then ar ∈ I and ar ∈ J since I and J are ideals.
Thus, ar ∈ I ∩ J . Hence we see I ∩ J is an ideal. �

5. Prove that the map φ : Q[
√

7] → Q[
√

7] given by φ(a + b
√

7) = a − b
√

7 is an isomorphism.

Proof: Observe that φ(1) = 1. Let a + b
√

7, c + d
√

7 ∈ Q[
√

7]. It is then easy to see φ is a
homomorphism:

φ((a + b
√

7) + (c + d
√

7)) = φ((a + c) + (b + d)
√

7)

= (a + c) − (b + d)
√

7

= (a − b
√

7) + (c − d
√

7)

= φ(a + b
√

7) + φ(c + d
√

7)

and

φ((a + b
√

7) · (c + d
√

7)) = φ((ac + 7bd) + (ad + bc)
√

7)

= (ac + 7bd) − (ad + bc)
√

7

= (a − b
√

7) · (c − d
√

7)

= φ(a + b
√

7)φ(c + d
√

7).

To see φ is surjective, observe that φ(a − b
√

7) = a + b
√

7. It is clear φ is injective by observing
that φ(a + b

√
7) = 0 if and only if a = b = 0. Thus, we have that φ is an isomorphism. �
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6. Prove that the composition of two isomorphisms is again an isomorphism. (You may NOT
quote any results about composition of functions from Math 580!)

Proof: Let f : R → S and g :→ T be two isomorphisms. Then we wish to show h = g◦f : R → T
is an isomorphism. First observe that h(1R) = g(f(1R)) = g(1S) = 1T . Let a, b ∈ R. We have

h(a + b) = g(f(a + b))

= g(f(a) + f(b))

= g(f(a)) + g(f(b))

= h(a) + h(b)

where we have used that f and g are homomorphisms. As for the multiplicative structure, we
have

h(ab) = g(f(ab))

= g(f(a)f(b))

= g(f(a))g(f(b))

= h(a)h(b)

where we again have used that f and g are homomorphisms. Thus we have that h is a homomor-
phism. Now we need to see that h is injective and surjective. We show injectivity by showing the
kernel is 〈0R〉. Let r ∈ ker h. Then g(f(r)) = 0T . Since g is injective we must have f(r) = 0S .
Since f is injective we must have r = 0R, as claimed. Now to show h is surjective, let t ∈ T . Since
g is surjective there exists a s ∈ S so that g(s) = t. Since f is surjective there exists a r ∈ R so
that f(r) = s. Thus we have h(r) = t and hence h is surjective. We have shown that h is an
isomorphism as claimed. �

7. Prove that R[x]/〈x2 + 1〉 ∼= C.

Proof: We use the first isomorphism theorem to prove this result. Define φ : R[x] → C by
φ(f(x)) = f(i). It is clear that this map is surjective, for instance, φ(a + bx) = a + bi. Note that
φ(1) = 1. To see that φ respects the additive and multiplicative structures, observe that we have

φ(f(x) + g(x)) = f(i) + g(i)

= φ(f(x)) + φ(g(x))

and

φ(f(x)g(x)) = f(i)g(i)

= φ(f(x))φ(g(x)).

Thus we see φ is an onto homomorphism from R[x] to C. It is clear that 〈x2 + 1〉 ⊂ ker φ. The
fact that R[x] is a PID and x2 + 1 is irreducible over R[x] then gives that kerφ = 〈x2 + 1〉. Thus,
the first isomorphism theorem allows us to conclude that R[x]/〈x2 + 1〉 ∼= C. �
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8. Prove that 5

√

17

25
is not a rational number. (It may be helpful to consider the polynomial

f(x) = 25x5 − 17.)

Proof: Consider the polynomial f(x) = 25x5 − 17. Note that this polynomial is irreducible over

Q by Eisenstein applied with p = 17. If 5

√

17

25
were in Q, then f(x) would necessarily be reducible

as it would have a root in Q. Thus it must be that 5

√

17

25
/∈ Q. �

9. Let φ : R → S be an homomorphism between commutative rings.

(a) Define the image of φ, i.e., φ(R).

φ(R) = {φ(r) : r ∈ R}.

(b) Prove that φ(R) is a subring of S.

Proof: First observe that since φ is a homomorphism, 0S and 1S are both in φ(R). Let φ(a) and
φ(b) be in φ(R). Using that φ is a homomorphism, φ(a) + φ(b) = φ(a + b) ∈ φ(R). Thus φ(R) is
closed under addition. Again using φ is a homomorphism we have φ(a)φ(b) = φ(ab) ∈ φ(R) and
so φ(R) is closed under multiplication. It only remains to show that −φ(a) ∈ φ(R). However, we
know that −φ(a) = φ(−a) since φ is a homomorphism, so this is clear as well. Thus φ(R) is a
subring of S. �

(d) Prove that if R is a field, then φ(R) is a field. (Problem 2(b) may be helpful here!)

Proof: Note that we have φ : R → φ(R) by the definition of φ(R) and moreover this is now
a surjective homomorphism. The first isomorphism theorem now tells us that R/ ker φ ∼= φ(R),
so it only remains to determine the possibilities for kerφ. Since φ is a homomorphism, we know
φ(1R) = 1S , so in particular 1R /∈ kerφ. Thus, ker φ 6= R. Now by problem 2(b) the only other
possibility is for ker φ = 〈0R〉. Thus we have R ∼= φ(R) and hence φ(R) is a field. �
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10. An ideal ℘ in a commutative ring R is said to be a prime ideal if ℘ 6= R and whenever ab ∈ ℘,
then a ∈ ℘ or b ∈ ℘.

(a) Let p ∈ Z be a prime number. Show that 〈p〉 is a prime ideal.

Proof: Let bc ∈ 〈p〉. This means that p|bc. However, using that p is a prime we have that p|b or
p|c and thus either b ∈ 〈p〉 or c ∈ 〈p〉 as desired. �

(b) Show that if ℘ is a prime ideal, then R/℘ is an integral domain.

Proof: Since R is a commutative ring, it only remains to show that there are no zero-divisors in
R/℘. Suppose that there exists a and b in R/℘ so that a · b = 0. In particular, this is equivalent
to the fact that ab ∈ ℘. However, since ℘ is a prime ideal, it must be that a or b is in ℘, i.e., a or
b is 0. Thus there are no zero-divisors and hence R/℘ is an integral domain. �

(c) Show that if R/℘ is an integral domain, then ℘ is a prime ideal.

Proof: Suppose R/℘ is an integral domain and let ab ∈ ℘. Then we have that ab = a · b = 0.
However, using that R/℘ is an integral domain shows that either a or b is 0, i.e., a ∈ ℘ or b ∈ ℘.
Thus ℘ is a prime ideal. �


