MATH 581 — FIRST MIDTERM EXAM April 21, 2006

NAME:

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 9 pages including this cover. There are 10 problems.
- 3. Do not separate the pages of the exam.
- 4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
- 5. If you are unsure whether you can quote a result from class or the book, please ask.
- 6. Please turn **off** all cell phones.

PROBLEM	POINTS	SCORE
1	12	
2	8	
3	10	
4	8	
5	8	
6	10	
7	8	
8	8	
9	13	
10	15	
TOTAL	100	

- 1. (3 points each) Throughout this problem R is a commutative ring and F is a field.
- (a) Define what it means for $I \subset R$ to be an ideal.

(b) Define what it means for $f(x) \in F[x]$ to be irreducible.

(c) Give an example of a reducible polynomial $f(x) \in \mathbb{Q}[x]$ that has no roots in \mathbb{Q} .

(e) Let $a \in R$. Define $\langle a \rangle$.

2. (3+5 points) Let $\phi: R \to S$ be a ring homomorphism between two commutative rings.

(b) Prove that ker ϕ is an ideal of R.

⁽a) Define ker ϕ .

3. (5 points each) (a) Prove that if $I \subset R$ is an ideal and I contains a unit, then I = R.

(b) Let F be a field. Prove that the only ideals in F are $\langle 0_F \rangle$ and F.

4. (8 points) Let I and J be ideals in R. Prove that $I \cap J$ is an ideal in R.

5. (8 points) Prove that the map $\phi : \mathbb{Q}[\sqrt{7}] \to \mathbb{Q}[\sqrt{7}]$ given by $\phi(a + b\sqrt{7}) = a - b\sqrt{7}$ is an isomorphism.

6. (10 points) Prove that the composition of two isomorphisms is again an isomorphism. (You may NOT quote any results about composition of functions from Math 580!)

7. (8 points) Prove that $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$.

8. (8 points) Prove that $\sqrt[5]{\frac{17}{25}}$ is not a rational number. (It may be helpful to consider the polynomial $f(x) = 25x^5 - 17$.)

- 9. (3+5+5 points) Let $\phi: R \to S$ be a homomorphism between commutative rings.
- (a) Define the image of ϕ , i.e., $\phi(R)$.

(b) Prove that $\phi(R)$ is a subring of S.

(d) Prove that if R is a field, then $\phi(R)$ is a field. (Problem 2(b) may be helpful here!)

10. (5 points each) An ideal \wp in a commutative ring R is said to be a *prime ideal* if $\wp \neq R$ and whenever $ab \in \wp$, then $a \in \wp$ or $b \in \wp$.

(a) Let $p \in \mathbb{Z}$ be a prime number. Show that $\langle p \rangle$ is a prime ideal.

(b) Show that if \wp is a prime ideal, then R/\wp is an integral domain.

(c) Show that if R/\wp is an integral domain, then \wp is a prime ideal.