
MATH 581 — FINAL EXAM

June 7, 2006

NAME: SOLUTIONS

1. Do not open this exam until you are told to begin.

2. This exam has 9 pages including this cover. There are 9 problems.

3. Your final consists of this exam (90 points) and the out of class cryptography assignment (10 points).

4. Do not separate the pages of the exam.

5. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.

6. If you are unsure whether you can quote a result from class or the book, please ask.

7. Please turn off all cell phones.

PROBLEM POINTS SCORE

1 9

2 9

3 9

4 11

5 8

6 12

7 8

8 12

9 12

TOTAL 90
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1. (3 points each) Define AND give an example of each of the following. You do not need to
prove your example is an example.

(a) field

A field is a commutative ring in which all nonzero elements are units. An example is Q.

(b) group

A group is a nonempty set G with an operation · so that
(1) If a, b, c ∈ G, then (a · b) · c = a · (b · c)
(2) There is an identity element eG ∈ G so that eG · a = a = a · eG for all a ∈ G.
(3) If a ∈ G, there is an element a−1 ∈ G so that a · a−1 = eG = a−1 · a.
An example of a group is Z under the operation of addition.

(c) ideal

An ideal I is a nonempty subset of a commutative ring R so that
(1) If a, b ∈ I, then a+ b ∈ I
(2) If a ∈ I and r ∈ R, then ra ∈ I.
An example of an ideal is the set 3Z = 〈3〉 = {3n : n ∈ Z}. This is an ideal in the ring Z.

2. (3 points each) Give examples of the following.

(a) an integral domain that is not a field

The ring Z is an integral domain but not a field.

(b) a non-abelian group

The group S3 is a non-abelian group.

(c) a field K that is a degree 3 extension of Q

The field Q[ 3
√

2] is a degree 3 extension of Q.
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3. (3 points each) Let H and N be subgroups of a group G.

(a) Prove that H ∩N is a subgroup of G.

Proof: First observe that since H and N are subgroups, necessarily eG is in each of them, and
hence, eG ∈ H ∩ N . Thus, H ∩ N is nonempty. Let a, b ∈ H ∩ N , i.e., a, b ∈ H and a, b ∈ N .
Using that H is a subgroup we get that a+ b ∈ H and a−1 ∈ H. Similarly, we get that a+ b ∈ N
and a−1 ∈ N . Thus, a+ b ∈ H ∩N and a−1 ∈ H ∩N . Hence, H ∩N is a subgroup of G. �

(b) Prove that if H and N are both normal subgroups of G, thenH∩N is a normal subgroup of G.

Proof: We know from part (a) that H ∩ N is a subgroup of G so we only need to show it is a
normal subgroup. Let h ∈ H∩N and g ∈ G. To see this H∩N is normal, we need only show that
ghg−1 ∈ H ∩N . Using that h ∈ H and H is a normal subgroup of G, we have that ghg−1 ∈ H.
Similarly, ghg−1 ∈ N . Thus, ghg−1 ∈ H ∩N and hence it is a normal subgroup of G. �

(c) Suppose |H| = 49 and |N | = 100. Prove that H ∩N = {eG}.

Proof: Lagrange’s theorem shows that |H ∩ N | must divide 49 and 100. However, the only
common divisor of 49 and 100 is 1, so |H ∩ N | = 1. Since it is a subgroup, it must contain eG

and hence H ∩N = {eG}. �

4. (3+2+3+3 points) Let G = S3, the symmetric group on 3 elements. Set

N =

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 3 1

)

,

(

1 2 3
3 1 2

)}

.

(a) Show that N = 〈
(

1 2 3
2 3 1

)

〉.

Proof: Observe that

(

1 2 3
2 3 1

)2

=

(

1 2 3
3 1 2

)

and

(

1 2 3
2 3 1

)3

=

(

1 2 3
1 2 3

)

. Thus, we see the

two sets are equal. �

(b) What is [G : N ]?

We have that [G : N ] = 6/3 = 2.

(c) Show that N is a normal subgroup of G.

Proof: Since N is an index 2 subgroup you proved in the last homework set that N is necessarily
normal. See the solutions from the homework for the proof. �

(d) List the elements of the group G/N . What familiar group is G/N isomorphic to?

There are only 2 distinct cosets, we can choose representatives for them so they are given by
(

1 2 3
1 2 3

)

N and

(

1 2 3
2 1 3

)

N . This is a group with only two elements, so it is isomorphic to

Z/2Z. If you prefer to stay with multiplicative notation, it is isomorphic to {±1}.
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5. (4 points each) Do either part (a) or part (b). Please indicate clearly which one you’d like me
to grade.

(a) (i) Prove that Q[x]/〈x13 − 13〉 ∼= Q[ 13
√

13].

Proof: Observe that f(x) = x13 − 13 is irreducible by Eisenstein’s criterion with p = 13. Define
ϕ : Q[x] → Q[ 13

√
13] by ϕ(f(x)) = f( 13

√
13). This is an evaluation map, so it is a homomorphism.

It is onto because a 7→ a for a ∈ Q and x 7→ 13
√

13 and this element generates the extension. Since
f(x) = x13 − 13 is irreducible and is clearly in the kernel of ϕ, we have that kerϕ = 〈x13 − 13〉.
The first isomorphism theorem then gives the result. �

(ii) What is [Q[ 13
√

13] : Q]?

[Q[ 13
√

13] : Q] = deg f(x) = 13.

(b) (i) Prove that (Z/5Z) [x]/〈x3 + 3x+ 3〉 is a field.

Proof: To see this is a field, we need only show that f(x) = x3+3x+3 is irreducible in (Z/5Z) [x].
Since f(x) has degree 3, it is enough to check that it has no roots in Z/5Z. It is then easy to plug
in 0, . . . , 4 and see that none are zeros of f(x). �

(ii) How many elements are in this field?

Since f(x) has degree 3, there are 53 = 125 elements in this field.
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6. (3 points each) Let G and H be groups.

(a) Prove that G×H = {(g, h) : g ∈ G, h ∈ H} is a group.

Proof: Let ? be the group operation on G and ∗ the group operation on H. Define a group
operation · on G × H by (a, b) · (c, d) = (a ? c, b ∗ d). Note that G × H is clearly closed under
this operation since G and H are groups and hence closed. It also follows we have associativity
because we have it for ? and ∗. Observe that (eG, eH) is the identity element of G×H under the
operation ·. Let (a, b) ∈ G×H. It is then easy to see that (a−1, b−1) is the inverse of (a, b). Thus,
G×H is a group. �

(b) Set A = {(g, eH ) : g ∈ G}. Prove that A is a normal subgroup of G×H.

Proof: Observe that A is nonempty as (eG, eH) ∈ A. Let (a, eH ) and (b, eH ) be in A. Then
we have (a, eH ) · (b, eH) = (a ? b, eH) ∈ A. Similarly, (a, eH )−1 = (a−1, eH) ∈ A. Thus, A is a
subgroup. Let (g, h) ∈ G×H. To see A is normal we calculate:

(g, h) · (a, eH) · (g, h)−1 = (g, h) · (a, eH) · (g−1, h−1)

= (g ? a ? g−1, h ∗ eH ∗ h−1)

= (g ? a ? g−1, eH) ∈ A.

Thus, A is a normal subgroup. �

(c) Prove that G ∼= A.

Proof: Define ϕ : G→ A by ϕ(g) = (g, eH ). Let a, b ∈ G. We have that ϕ(a ? b) = (a ? b, eH) =
(a, eH) · (b, eH ) = ϕ(a) · ϕ(b). Thus, ϕ is a homomorphism. Let (a, eH ) ∈ A. Clearly we have
ϕ(a) = (a, eH), so ϕ is surjective. Let a ∈ kerϕ, i.e., (a, eH ) = (eG, eH). Thus, a = eG and so ϕ
is injective. Hence we have that ϕ is an isomorphism. �

(d) Prove that (G×H)/A ∼= H.

Proof: Define ϕ : G×H → H by ϕ((g, h)) = h. It is easy to check that this map is onto and is
a homomorphism. Let (g, h) ∈ kerϕ, i.e., h = eH . It is then clear that kerϕ = A and so the first
isomorphism theorem gives the result. �
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7. (3+5 points) Let G,H and N be groups.

(a) Define what it means for a map ϕ : G→ H to be a group homomorphism.

The map ϕ is a group homomorphism if ϕ(a ? b) = ϕ(a) ∗ ϕ(b) for all a, b ∈ G where ? is the
operation on G and ∗ is the operation on H.

(b) Prove that if ϕ : G → H and ψ : H → N are group isomorphisms, then ψ ◦ ϕ : G → N is a
group isomorphism.

Proof: Let · be the operation on N . Let a, b ∈ G. We have

ψ ◦ ϕ(a ? b) = ψ(ϕ(a ? b)

= ψ(ϕ(a) ∗ ϕ(b))

= ψ(ϕ(a)) · ψ(ϕ(b))

where we have used that ψ and ϕ are homomorphisms. Thus, ψ ◦ ϕ is a homomorphism. Let
g ∈ kerψ ◦ ϕ. In particular, we have ψ(ϕ(g)) = eN . However, ψ is an isomorphism and hence
injective, so ϕ(g) = eH . Similarly, ϕ is injective so g = eG. Thus, kerψ ◦ ϕ = {eG} and so ψ ◦ ϕ
is injective. Let n ∈ N . The fact that ϕ is surjective implies that there exists h ∈ H so that
ϕ(h) = n. Similarly, ψ is surjective so there exists g ∈ G so that ψ(g) = h. Thus, ψ ◦ ϕ(g) = n
and hence ψ ◦ ϕ is surjective. Hence we have shown that ψ ◦ ϕ is an isomorphism. �
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8. (2 points each) Use the following tower of fields to answer the questions below. Recall that
lines indicate containment between fields.
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(a) Is it possible for F5 ∩ F6 = F4? If not, why not?

No, F4 is not even a subset of F5.

(b) What is [F8 : F4]?

[F8 : F4] = [F8 : F6][F6 : F4] = 5 · 2 = 10

(c) What is [F8 : F5]?

Observe that [F8 : F1] = [F8 : F5][F5 : F2][F2 : F1] = 30[F8 : F5] on the one hand, and on the
other it is given by [F8 : F1] = [F8 : F6][F6 : F4][F4 : F1] = 5 · 2 · 9 = 90. Thus, it must be that
[F8 : F5] = 3.

(d) What is [F3 : F1]?

Note that [F6 : F1] = [F6 : F3][F3 : F1] = 3[F3 : F1] and we also have [F6 : F1] = [F6 : F4][F4 :
F1] = 18. Thus, [F3 : F1] = 6.

(e) What is [F5 : F3]?

Observe that [F5 : F1] = [F5 : F3][F3 : F1] = 6[F5 : F3] and we also have [F5 : F1] = [F5 : F2][F2 :
F1] = 30. Thus, [F5 : F3] = 5.

(f) Is it possible that [F9 : F1] = 120? If not, why not?

It is not possible. We have calculated that [F8 : F1] = 90. We also know that [F9 : F1] = [F9 :
F8][F8 : F1]. So if it were 120, we would have 90|120.
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9. (4 points each) (a) Prove that m is a unit in Z/nZ if and only if gcd(m,n) = 1.

Proof: Suppose m is a unit in Z/nZ. Then there exists a ∈ Z/nZ so that ma = 1 in Z/nZ, i.e.,
n|(am− 1). Thus, we have that there exists b ∈ Z so that nb = am− 1, i.e., 1 = ma+ nb. Note
that since gcd(m,n)|m and gcd(m,n)|n, we have that it divides ma + nb, i.e., gcd(m,n)|1 and
hence must be 1.
Now suppose that gcd(m,n) = 1. Then there exists a, b ∈ Z so that ma+ nb = 1. Reducing this
modulo n we have the equation ma = 1 in Z/nZ, i.e., m is a unit in Z/nZ. �

(b) Recall that (Z/nZ)× is the group of units in Z/nZ. What are the elements in (Z/pZ)× for p
a prime? What is the order of this group?

The elements in (Z/pZ)× are the units in Z/pZ. From part (a) we see these are the elements that
are relatively prime to p, i.e., the elements {1, 2, . . . , p− 1}. Thus there are p− 1 elements in the
group (Z/pZ)×.

(c) Prove that ap−1 ≡ 1(mod p) for all a such that gcd(a, p) = 1.

Proof: Let a be an integer so that gcd(a, p) = 1. Using parts (a) and (b) this implies that
a ∈ (Z/pZ)×. The order of this group is p− 1, so ap−1 = 1 in (Z/pZ)×, i.e., ap−1 ≡ 1(mod p). �


