Sample homework solutions for 2.3 Jim Brown

2. Recall that the conjugate of the complex number z = a + bi is defined to be $\overline{z} = a - bi$. Prove the following properties of the conjugate:

(c) $\overline{z} = z \iff z \in \mathbb{R}$ and $\overline{z} = -z \iff iz \in \mathbb{R}$

Proof: Observe that $\overline{z} = z$ if and only if b = 0 which is true if and only if $z \in \mathbb{R}$. This proves the first claim. For the second, observe that $\overline{z} = -z$ if and only if a = 0 which is true if and only if z = bi. This is equivalent to the statement that $iz \in \mathbb{R}$.

6. Use Corollary 3.3 to express the following in terms of $\sin \theta$ and $\cos \theta$ (the binomial theorem may prove helpful):

(b) $\cos 3\theta$

Note that $\cos 3\theta$ is the real part of the expression $(\cos \theta + i \sin \theta)^3$ by Corollary 3.3. Therefore, we have (using the binomial theorem) that

 $\cos 3\theta = \cos^3 \theta - \cos \theta \sin^2 \theta.$

11. Express the following n^{th} roots of unity in the form a + bi.

(a) n = 8

Note that the 8th roots of unity are given by $1, \omega, \omega^2, \ldots, \omega^7$ where

$$\omega = e^{\frac{2\pi i}{8}} = \cos\left(\frac{2\pi i}{4}\right) + i\sin\left(\frac{2\pi i}{8}\right).$$

Thus, we have that the 8th roots of unity are given by:

19. Let $\mathbb{Q}\left[\sqrt{-5}\right] = \left\{a + b\sqrt{-5} : a, b \in \mathbb{Q}\right\} \subset \mathbb{C}$. Show that $\mathbb{Q}\left[\sqrt{-5}\right]$ is a field.

Proof: To ease notation set $K = \mathbb{Q}\left[\sqrt{-5}\right]$. Since $K \subset \mathbb{C}$ and \mathbb{C} is a field, we need only show that K is a subring of \mathbb{C} and that multiplicative inverses of elements in K also lie in K. Let $a + b\sqrt{-5}$ and $c + d\sqrt{-5}$ be in K.

closed under addition: $(a+b\sqrt{-5})+(c+d\sqrt{-5})=(a+c)+(b+d)\sqrt{-5}\in K$ since $a+c,b+d\in\mathbb{Q}$.

closed under multiplication: $(a + b\sqrt{-5})(c + d\sqrt{-5}) = (ac - 5bd) + (ad + bc)\sqrt{-5} \in K$ since ac - 5bd and ad + bc are in \mathbb{Q} .

additive identity: $0 = 0 + 0\sqrt{-5} \in K$

multiplicative identity: $1 = 1 + 0\sqrt{-5} \in K$

<u>additive inverse</u>: $-a - b\sqrt{-5} \in K$ since -a and -b are in \mathbb{Q} .

Thus we have that K is a subring of \mathbb{C} . Now observe that if $a + b\sqrt{-5} \neq 0$,

then

$$\frac{1}{a+b\sqrt{-5}} = \frac{a-b\sqrt{-5}}{(a+b\sqrt{-5})(a-b\sqrt{-5})} \\ = \frac{a-b\sqrt{-5}}{a^2+5b^2} \\ = \left(\frac{a}{a^2+5b^2}\right) - \left(\frac{b}{a^2+5b^2}\right)\sqrt{-5} \in K$$

since $\frac{a}{a^2 + 5b^2}$ and $-\frac{b}{a^2 + 5b^2}$ are both in \mathbb{Q} . Thus K is a field.