Sample homework solutions for 2.3 Jim Brown

2. Recall that the conjugate of the complex number $z = a + bi$ is defined to be $\overline{z} = a - bi$. Prove the following properties of the conjugate:

(c) $\overline{z} = z \Longleftrightarrow z \in \mathbb{R}$ and $\overline{z} = -z \Longleftrightarrow iz \in \mathbb{R}$

Proof: Observe that $\overline{z} = z$ if and only if $b = 0$ which is true if and only if $z \in \mathbb{R}$. This proves the first claim. For the second, observe that $\overline{z} = -z$ if and only if $a = 0$ which is true if and only if $z = bi$. This is equivalent to the statement that $iz \in \mathbb{R}$.

6. Use Corollary 3.3 to express the following in terms of $\sin \theta$ and $\cos \theta$ (the binomial theorem may prove helpful):

(b) $\cos 3\theta$

Note that $\cos 3\theta$ is the real part of the expression $(\cos \theta + i \sin \theta)^3$ by Corollary 3.3. Therefore, we have (using the binomial theorem) that

$$
\cos 3\theta = \cos^3 \theta - \cos \theta \sin^2 \theta.
$$

11. Express the following n^{th} roots of unity in the form $a + bi$.

(a) $n = 8$

Note that the 8th roots of unity are given by $1, \omega, \omega^2, \ldots, \omega^7$ where

$$
\omega = e^{\frac{2\pi i}{8}} = \cos\left(\frac{2\pi i}{4}\right) + i\sin\left(\frac{2\pi i}{8}\right).
$$

Thus, we have that the $8th$ roots of unity are given by:

$$
1 = 1 + 0i
$$

\n
$$
\omega = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}
$$

\n
$$
\omega^2 = i
$$

\n
$$
\omega^3 = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}
$$

\n
$$
\omega^4 = -1
$$

\n
$$
\omega^5 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}
$$

\n
$$
\omega^6 = -i
$$

\n
$$
\omega^7 = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}
$$

19. Let $\mathbb{Q}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Q}\} \subset \mathbb{C}$. Show that $\mathbb{Q}[\sqrt{-5}]$ is a field.

Proof: To ease notation set $K = \mathbb{Q} \left[\sqrt{-5} \right]$. Since $K \subset \mathbb{C}$ and \mathbb{C} is a field, we need only show that K is a subring of $\mathbb C$ and that multiplicative inverses of elements in K also lie in K. Let $a+b\sqrt{-5}$ and $c+d\sqrt{-5}$ be in K.

closed under addition: $(a+b\sqrt{-5}) + (c+d\sqrt{-5}) = (a+c) + (b+d)\sqrt{-5} \in K$ since $a + c, b + d \in \mathbb{Q}$.

closed under multiplication: $(a + b\sqrt{-5})(c + d\sqrt{-5}) = (ac - 5bd) + (ad +$ $bc)\sqrt{-5} \in K$ since $ac - 5bd$ and $ad + bc$ are in Q.

additive identity: $0 = 0 + 0\sqrt{-5} \in K$

multiplicative identity: $1 = 1 + 0\sqrt{-5} \in K$

additive inverse: $-a - b\sqrt{-5} \in K$ since $-a$ and $-b$ are in \mathbb{Q} .

Thus we have that K is a subring of \mathbb{C} . Now observe that if $a + b\sqrt{-5} \neq 0$,

then

$$
\frac{1}{a+b\sqrt{-5}} = \frac{a-b\sqrt{-5}}{(a+b\sqrt{-5})(a-b\sqrt{-5})}
$$

$$
= \frac{a-b\sqrt{-5}}{a^2+5b^2}
$$

$$
= \left(\frac{a}{a^2+5b^2}\right) - \left(\frac{b}{a^2+5b^2}\right)\sqrt{-5} \in K
$$

since $\frac{a}{2}$ $\frac{a}{a^2 + 5b^2}$ and $-\frac{b}{a^2 +}$ $\frac{0}{a^2+5b^2}$ are both in Q. Thus K is a field.