Sample homework solutions for 2.2
Jim Brown

3. Prove that for z,y € RT, JfT‘Fy > /Ty.

Proof: Note that this is equivalent to proving that = +y > 2,/zy. Us-
ing problem 2 of this section (which is proved by induction on n), we
see that = +y > 2,/zy if and only if (z + y)* > (2\/zy)? if and only if
2?2 + 2xy + y? > 4oy if and only if 22 + 2zy + y? — 4zy > 0. Now observe
that 22+ 2zy +y? — 4y = 22 — 22y +y? = (v —y)?. Using that (z —y)2 >0
for all z,y € R™, we have the statement. H

5. Do the irrational numbers form a field? In particular, is it true that if
a and b are irrational numbers, then a 4+ b and ab are necessarily irrational
numbers?

The irrational numbers do not form a field. The easiest way to see this is to
observe that 0 € Q, so 0 is not an irrational number. Thus there is no 0 in
the irrational numbers. We know that /2 is an irrational number, however,
V2v/2 = 2 € Q, so the irrationals are not closed under multiplication. We
also have that —+/2 is an irrational number, but v/2 + (=v/2) = 0 € Q, so
the irrationals are not closed under addition either.

6. Prove that the following numbers are irrational:
(a) V3

Proof: We apply the exact same argument used to prove that v/2 is irra-
tional, this time reaching a contradiction that if v/3 = % with ged(a,b) =1,
then we show that 3|a and 3|b. B

(b) V2

Proof: Suppose there exists % € Q with ged(a,b) = 1 and V2 = %. We

can write a® = 2b%. In particular we have that 2|a. Now applying home-
work problem 9 from 1.2 we see that 2|a. Thus there exists a k € Z so that
a = 2k. Plugging this into our original equation we have b3 = 4k3. This
implies that 4|b3, in particular, 2|b®. As above, this implies that 2|b. This



is a contradiction as we assumed ged(a,b) = 1. B

(c) logyy3

Proof: Suppose there exists % € Q with ged(a,b) = 1, a and b not both

a a
negative, and log;y3 = 7 This translates to the statement that 10v = 3,

i.e., 10 = 3. So we have reduced the problem to showing that this equation
cannot occur. If a < 0, then by assumption b > 0 and 10® < 1 < 3°, so we
cannot have equality. Similarly if b < 0. So we are reduced to the case that
a and b are both positive integers. Again there are several ways to show this
equality cannot occur. The easiest probably being to observe that 10¢ is an
even integer where 3% is an odd integer so we cannot have equality. W

(d) v2+ V3

Proof: Suppose there exists % € Q with ged(a, b) = 1, a and b not both neg-

2
ative, and V2 +v/3 = %. Squaring both sides we have 2 + 26+ 3 = <%> .

Solving this for v/6 we see that v/6 € Q. So there exists g € Q with
ged(e,d) = 1 so that V6 = 2 As in part (a) we get that ¢ = 6d2. Thus,

2 | ¢%, which implies 2 | c. So we can write ¢ = 2k for some integer k. Our
equation becomes 2k? = 3d?. This shows that 2|3d?, but since 2 t 3, we
must have 2|d? by Proposition 2.5 of Chapter 1. Thus 2|d, a contradiction
to the fact that ged(c,d) = 1. Thus it must be that /2 + /3 is irrational.
|

7. Elaborate on the density principle enunciated in Proposition 1.4 as fol-
lows:

V2

(a) Using the fact that 0 < - < 1, prove that between any two distinct

rational numbers there is an irrational number.

Proof: We will show this statement in two different ways. First, observe
that if @ € Q then a + /2 is an irrational number. For suppose it were
rational, then we would have a + v2 = b € Q, but this implies that
V2 = b—a € Q, which is a contradiction. Let 7 < s be two rational
numbers. Then we have r + v/2 < s+ /2. Apply Proposition 2.4 which



states that between any two real numbers is a rational number to conclude
that there exists a ¢ € Q so that r+ /2 < ¢ < s+ /2. Now we just subtract
V2 to get r < c+ V2 < s and from above we have that ¢+ /2 is an irrational
number.

For the second proof, observe that if a € Q with a # 0, then av/2 is an
irrational number. If it were rational, we would have av/2 = b for some

b
b € Q. But then V2 = = € Q, a contradiction. Now suppose we have two
a

rational numbers < s. Thus we have v2r < /2s. Using Proposition 2.4
s
again we see that there is a rational number ¢ so that — < ¢ < —, i.e.,

V2 V2’

r <1/2¢ < s and we are done. W

(b) Deduce that between any two distinct real numbers there is an irrational
number.

Proof: Let x < y be two distinct real numbers. By Proposition 2.4 there
is a rational number r so that z < r < y. Now treating r as a real number,
we apply Proposition 2.4 to r < y to obtain a rational number s so that
r < s < y. Thus we have z < r < s < y. Now apply part (a) to find an
irrational number z so that r < z < s and we are done. l



