Sample homework solutions for 2.2 Jim Brown

3. Prove that for $x, y \in \mathbb{R}^+$, $\frac{x+y}{2} \ge \sqrt{xy}$.

Proof: Note that this is equivalent to proving that $x + y \ge 2\sqrt{xy}$. Using problem 2 of this section (which is proved by induction on *n*), we see that $x + y \ge 2\sqrt{xy}$ if and only if $(x + y)^2 \ge (2\sqrt{xy})^2$ if and only if $x^2 + 2xy + y^2 \ge 4xy$ if and only if $x^2 + 2xy + y^2 \ge 4xy$ if and only if $x^2 + 2xy + y^2 - 4xy \ge 0$. Now observe that $x^2 + 2xy + y^2 - 4xy = x^2 - 2xy + y^2 = (x - y)^2$. Using that $(x - y)^2 \ge 0$ for all $x, y \in \mathbb{R}^+$, we have the statement.

5. Do the irrational numbers form a field? In particular, is it true that if a and b are irrational numbers, then a + b and ab are necessarily irrational numbers?

The irrational numbers do not form a field. The easiest way to see this is to observe that $0 \in \mathbb{Q}$, so 0 is not an irrational number. Thus there is no 0 in the irrational numbers. We know that $\sqrt{2}$ is an irrational number, however, $\sqrt{2}\sqrt{2} = 2 \in \mathbb{Q}$, so the irrationals are not closed under multiplication. We also have that $-\sqrt{2}$ is an irrational number, but $\sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}$, so the irrationals are not closed under multiplication. We irrationals are not closed under addition either.

6. Prove that the following numbers are irrational:

(a) $\sqrt{3}$

Proof: We apply the exact same argument used to prove that $\sqrt{2}$ is irrational, this time reaching a contradiction that if $\sqrt{3} = \frac{a}{b}$ with gcd(a, b) = 1, then we show that 3|a and 3|b.

(b) $\sqrt[3]{2}$

Proof: Suppose there exists $\frac{a}{b} \in \mathbb{Q}$ with gcd(a, b) = 1 and $\sqrt[3]{2} = \frac{a}{b}$. We can write $a^3 = 2b^3$. In particular we have that $2|a^3$. Now applying homework problem 9 from 1.2 we see that 2|a. Thus there exists a $k \in \mathbb{Z}$ so that a = 2k. Plugging this into our original equation we have $b^3 = 4k^3$. This implies that $4|b^3$, in particular, $2|b^3$. As above, this implies that 2|b. This

is a contradiction as we assumed gcd(a, b) = 1.

(c) $\log_{10} 3$

Proof: Suppose there exists $\frac{a}{b} \in \mathbb{Q}$ with gcd(a, b) = 1, a and b not both negative, and $\log_{10} 3 = \frac{a}{b}$. This translates to the statement that $10^{\frac{a}{b}} = 3$, i.e., $10^a = 3^b$. So we have reduced the problem to showing that this equation cannot occur. If $a \leq 0$, then by assumption b > 0 and $10^a \leq 1 < 3^b$, so we cannot have equality. Similarly if b < 0. So we are reduced to the case that a and b are both positive integers. Again there are several ways to show this equality cannot occur. The easiest probably being to observe that 10^a is an even integer where 3^b is an odd integer so we cannot have equality.

(d) $\sqrt{2} + \sqrt{3}$

Proof: Suppose there exists $\frac{a}{b} \in \mathbb{Q}$ with gcd(a, b) = 1, a and b not both negative, and $\sqrt{2} + \sqrt{3} = \frac{a}{b}$. Squaring both sides we have $2 + 2\sqrt{6} + 3 = \left(\frac{a}{b}\right)^2$. Solving this for $\sqrt{6}$ we see that $\sqrt{6} \in \mathbb{Q}$. So there exists $\frac{c}{d} \in \mathbb{Q}$ with gcd(c, d) = 1 so that $\sqrt{6} = \frac{c}{d}$. As in part (a) we get that $c^2 = 6d^2$. Thus, $2 \mid c^2$, which implies $2 \mid c$. So we can write c = 2k for some integer k. Our equation becomes $2k^2 = 3d^2$. This shows that $2\mid 3d^2$, but since $2 \nmid 3$, we must have $2\mid d^2$ by Proposition 2.5 of Chapter 1. Thus $2\mid d$, a contradiction to the fact that gcd(c, d) = 1. Thus it must be that $\sqrt{2} + \sqrt{3}$ is irrational.

7. Elaborate on the density principle enunciated in Proposition 1.4 as follows:

(a) Using the fact that $0 < \frac{\sqrt{2}}{2} < 1$, prove that between any two distinct rational numbers there is an irrational number.

Proof: We will show this statement in two different ways. First, observe that if $a \in \mathbb{Q}$ then $a + \sqrt{2}$ is an irrational number. For suppose it were rational, then we would have $a + \sqrt{2} = b \in \mathbb{Q}$, but this implies that $\sqrt{2} = b - a \in \mathbb{Q}$, which is a contradiction. Let r < s be two rational numbers. Then we have $r + \sqrt{2} < s + \sqrt{2}$. Apply Proposition 2.4 which

states that between any two real numbers is a rational number to conclude that there exists a $c \in \mathbb{Q}$ so that $r + \sqrt{2} < c < s + \sqrt{2}$. Now we just subtract $\sqrt{2}$ to get $r < c + \sqrt{2} < s$ and from above we have that $c + \sqrt{2}$ is an irrational number.

For the second proof, observe that if $a \in \mathbb{Q}$ with $a \neq 0$, then $a\sqrt{2}$ is an irrational number. If it were rational, we would have $a\sqrt{2} = b$ for some $b \in \mathbb{Q}$. But then $\sqrt{2} = \frac{b}{a} \in \mathbb{Q}$, a contradiction. Now suppose we have two rational numbers r < s. Thus we have $\sqrt{2}r < \sqrt{2}s$. Using Proposition 2.4 again we see that there is a rational number c so that $\frac{r}{\sqrt{2}} < c < \frac{s}{\sqrt{2}}$, i.e., $r < \sqrt{2}c < s$ and we are done.

(b) Deduce that between any two distinct real numbers there is an irrational number.

Proof: Let x < y be two distinct real numbers. By Proposition 2.4 there is a rational number r so that x < r < y. Now treating r as a real number, we apply Proposition 2.4 to r < y to obtain a rational number s so that r < s < y. Thus we have x < r < s < y. Now apply part (a) to find an irrational number z so that r < z < s and we are done.