
Sample homework solutions for 2.2

Jim Brown

3. Prove that for x, y ∈ R+,
x + y

2
≥ √

xy.

Proof: Note that this is equivalent to proving that x + y ≥ 2
√

xy. Us-
ing problem 2 of this section (which is proved by induction on n), we
see that x + y ≥ 2

√
xy if and only if (x + y)2 ≥ (2

√
xy)2 if and only if

x2 + 2xy + y2 ≥ 4xy if and only if x2 + 2xy + y2 − 4xy ≥ 0. Now observe
that x2 +2xy+y2−4xy = x2−2xy+y2 = (x−y)2. Using that (x−y)2 ≥ 0
for all x, y ∈ R+, we have the statement. �

5. Do the irrational numbers form a field? In particular, is it true that if
a and b are irrational numbers, then a + b and ab are necessarily irrational
numbers?

The irrational numbers do not form a field. The easiest way to see this is to
observe that 0 ∈ Q, so 0 is not an irrational number. Thus there is no 0 in
the irrational numbers. We know that

√
2 is an irrational number, however,√

2
√

2 = 2 ∈ Q, so the irrationals are not closed under multiplication. We
also have that −

√
2 is an irrational number, but

√
2 + (−

√
2) = 0 ∈ Q, so

the irrationals are not closed under addition either.

6. Prove that the following numbers are irrational:

(a)
√

3

Proof: We apply the exact same argument used to prove that
√

2 is irra-

tional, this time reaching a contradiction that if
√

3 =
a

b
with gcd(a, b) = 1,

then we show that 3|a and 3|b. �

(b) 3
√

2

Proof: Suppose there exists
a

b
∈ Q with gcd(a, b) = 1 and

3
√

2 =
a

b
. We

can write a3 = 2b3. In particular we have that 2|a3. Now applying home-
work problem 9 from 1.2 we see that 2|a. Thus there exists a k ∈ Z so that
a = 2k. Plugging this into our original equation we have b3 = 4k3. This
implies that 4|b3, in particular, 2|b3. As above, this implies that 2|b. This



2

is a contradiction as we assumed gcd(a, b) = 1. �

(c) log10 3

Proof: Suppose there exists
a

b
∈ Q with gcd(a, b) = 1, a and b not both

negative, and log10 3 =
a

b
. This translates to the statement that 10

a

b = 3,

i.e., 10a = 3b. So we have reduced the problem to showing that this equation
cannot occur. If a ≤ 0, then by assumption b > 0 and 10a ≤ 1 < 3b, so we
cannot have equality. Similarly if b < 0. So we are reduced to the case that
a and b are both positive integers. Again there are several ways to show this
equality cannot occur. The easiest probably being to observe that 10a is an
even integer where 3b is an odd integer so we cannot have equality. �

(d)
√

2 +
√

3

Proof: Suppose there exists
a

b
∈ Q with gcd(a, b) = 1, a and b not both neg-

ative, and
√

2 +
√

3 =
a

b
. Squaring both sides we have 2 + 2

√
6 +3 =

(a

b

)2

.

Solving this for
√

6 we see that
√

6 ∈ Q. So there exists
c

d
∈ Q with

gcd(c, d) = 1 so that
√

6 =
c

d
. As in part (a) we get that c2 = 6d2. Thus,

2 | c2, which implies 2 | c. So we can write c = 2k for some integer k. Our
equation becomes 2k2 = 3d2. This shows that 2|3d2, but since 2 - 3, we
must have 2|d2 by Proposition 2.5 of Chapter 1. Thus 2|d, a contradiction
to the fact that gcd(c, d) = 1. Thus it must be that

√
2 +

√
3 is irrational.

�

7. Elaborate on the density principle enunciated in Proposition 1.4 as fol-
lows:

(a) Using the fact that 0 <

√
2

2
< 1, prove that between any two distinct

rational numbers there is an irrational number.

Proof: We will show this statement in two different ways. First, observe
that if a ∈ Q then a +

√
2 is an irrational number. For suppose it were

rational, then we would have a +
√

2 = b ∈ Q, but this implies that√
2 = b − a ∈ Q, which is a contradiction. Let r < s be two rational

numbers. Then we have r +
√

2 < s +
√

2. Apply Proposition 2.4 which



3

states that between any two real numbers is a rational number to conclude
that there exists a c ∈ Q so that r+

√
2 < c < s+

√
2. Now we just subtract√

2 to get r < c+
√

2 < s and from above we have that c+
√

2 is an irrational
number.
For the second proof, observe that if a ∈ Q with a 6= 0, then a

√
2 is an

irrational number. If it were rational, we would have a
√

2 = b for some

b ∈ Q. But then
√

2 =
b

a
∈ Q, a contradiction. Now suppose we have two

rational numbers r < s. Thus we have
√

2r <
√

2s. Using Proposition 2.4

again we see that there is a rational number c so that
r√
2

< c <
s√
2
, i.e.,

r <
√

2c < s and we are done. �

(b) Deduce that between any two distinct real numbers there is an irrational
number.

Proof: Let x < y be two distinct real numbers. By Proposition 2.4 there
is a rational number r so that x < r < y. Now treating r as a real number,
we apply Proposition 2.4 to r < y to obtain a rational number s so that
r < s < y. Thus we have x < r < s < y. Now apply part (a) to find an
irrational number z so that r < z < s and we are done. �


