
Sample homework solutions for 2.1

Jim Brown

2. Prove Lemma 1.1.

Lemma 1.1 The following laws of inequalities are valid in any ordered field
F :
(i) If a > b, then a + c > b + c for all c ∈ F +.
(ii) If a > b and c > 0, then ac > bc.
(iii) If a > b and c < 0, then ac < bc.
(iv) If a > b and b > c, then a > c.
(v) If a 6= 0, then a2 > 0.

Proof: We proved some of these in class. The only two that are not com-
pletely analogous to the ones proved in class are (i) and (v), so we prove
those.
(i) Let a > b, i.e., a − b ∈ F +. Observe that (a + c) − (b + c) = a − b ∈ F +,
so we are done.
(v) Let a 6= 0. By the definition of ordered field, we have that a ∈ F + or
−a ∈ F+. If a ∈ F +, then a ·a = a2 must be in F + as well since F + is closed
under addition. Similiarly, we obtain that (−a)(−a) = a2 ∈ F+ where we
have used exercise 6(c) from section 1.4 here. �

3. Prove or give a counterexample. If the statement is false, modify it to
make it correct.
(a) if a > b and c > d, then ac > bd;

This statement is false. A simple counterexample would be −1 > −2 and
0 > −1, but 0 is not larger then 2. However, if we add the condition that
b > 0 and d > 0, then it becomes a true statement. To prove this, observe
that a > b and c > d > 0 implies by Lemma 1.1 (ii) that ac > bc. Now use
that c > d and b > 0 to conclude that bc > bd using Lemma 1.1 (ii) again.
Combining these two inequalities by Lemma 1.1 (iv) we have ac > bd. �

5. Prove that for r, s ∈ Q, each of the following inqualities holds. In each
case, also determine when equality holds.
(a) r2 + s2 ≥ 2rs

Proof: Observe that r2 + s2 − 2rs = (r − s)2. Since r − s ∈ Q, we see that
(r − s)2 ≥ 0 for all r, s ∈ Q. Rewriting this, r2 + s2 ≥ 2rs. It is also easy to
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see now that equality holds if and only if r = s. �

7. A common mistake made by high school algebra students (and, alas, by
college calculus students alike) is the following:
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b
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(a) Show that in any field this equation implies that either a = 0 or
b2 + bc + c2 = 0.

Proof: Basically we just need to get common denominators and bring ev-
erything to one side:

a(b2 + c2 + bc)

bc(b + c)
= 0.

Now we use that there are no zero-divisors in a field to conclude that a = 0
or b2 + c2 + bc = 0.

(b) Show that in Q it holds only when a = 0.

Proof: It clearly holds when a = 0, so we only need to show that b2+c2+bc
can never be zero for b, c ∈ Z. Suppose that it can be zero, i.e., there are
b, c ∈ Z so that b2 + bc + c2 = 0. Dividing both sides by c2 we get that
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)

+ 1 = 0.

Making the substitution x =
b

c
, we see that this amounts to having a ratio-

nal solution to the polynomial x2+x+1, which using the quadratic equation
we see has no rational roots.

(c) Give an example of a field where a 6= 0 and b2 + bc + c2 = 0 instead.

Proof: The field Z/3Z is such a field. Just set b = 1 = c and a = 1. Then
b2 + bc + c2 = 3̄ = 0̄ and a 6= 0̄. �


