Sample homework solutions for 2.1
Jim Brown

2. Prove Lemma 1.1.

Lemma 1.1 The following laws of inequalities are valid in any ordered field
F:

(i) Ifa > b, then a+c>b+cforall c € F*.

(ii) If @ > b and ¢ > 0, then ac > be.

(iii) If a > b and ¢ < 0, then ac < be.
(iv) If @ > b and b > ¢, then a > c.
(v) If a # 0, then a? > 0.

Proof: We proved some of these in class. The only two that are not com-
pletely analogous to the ones proved in class are (i) and (v), so we prove
those.

(i) Let @ > b, i.e., a — b € F*. Observe that (a +c¢) — (b+¢)=a—be FT,
so we are done.

(v) Let a # 0. By the definition of ordered field, we have that a € F* or
—a € Ft.Ifa € Ft, then a-a = a® must be in FT as well since F' is closed
under addition. Similiarly, we obtain that (—a)(—a) = a? € F* where we
have used exercise 6(c) from section 1.4 here. B

3. Prove or give a counterexample. If the statement is false, modify it to
make it correct.
(a) if @ > b and ¢ > d, then ac > bd;

This statement is false. A simple counterexample would be —1 > —2 and
0 > —1, but 0 is not larger then 2. However, if we add the condition that
b > 0 and d > 0, then it becomes a true statement. To prove this, observe
that a > b and ¢ > d > 0 implies by Lemma 1.1 (ii) that ac > bc. Now use
that ¢ > d and b > 0 to conclude that bc > bd using Lemma 1.1 (ii) again.
Combining these two inequalities by Lemma 1.1 (iv) we have ac > bd. B

5. Prove that for r,s € Q, each of the following inqualities holds. In each
case, also determine when equality holds.
(a) 72 + 5% > 2rs

Proof: Observe that r2 + s — 2rs = (r — s)2. Since r — s € Q, we see that
(r —s)2 >0 for all r, s € Q. Rewriting this, 2 + s > 2rs. It is also easy to



see now that equality holds if and only if r = s. B

7. A common mistake made by high school algebra students (and, alas, by
college calculus students alike) is the following:

b+

a,a a
b ¢

(a) Show that in any field this equation implies that either a = 0 or
b* 4+ be+c* = 0.

Proof: Basically we just need to get common denominators and bring ev-
erything to one side:
a(b? + % + be)
be(b+ ¢)

Now we use that there are no zero-divisors in a field to conclude that a =0
or b2+ %+ be = 0.

= 0.

(b) Show that in Q it holds only when a = 0.

Proof: It clearly holds when a = 0, so we only need to show that b2+ c%+ b
can never be zero for b,c € Z. Suppose that it can be zero, i.e., there are
b,c € Z so that b? + be + ¢ = 0. Dividing both sides by ¢? we get that

b\> (b
(2) +(2)+1=0
c c
. o b . . .
Making the substitution x = —, we see that this amounts to having a ratio-
c

nal solution to the polynomial 224z + 1, which using the quadratic equation
we see has no rational roots.

(c) Give an example of a field where a # 0 and b% + bc + ¢? = 0 instead.

Proof: The field Z/3Z is such a field. Just set b =1=c and a = 1. Then
bV +bc+c?=3=0anda#0. A



