Sample homework solutions for 2.1 Jim Brown

2. Prove Lemma 1.1.

Lemma 1.1 The following laws of inequalities are valid in any ordered field *F*:

(i) If a > b, then a + c > b + c for all $c \in F^+$. (ii) If a > b and c > 0, then ac > bc. (iii) If a > b and c < 0, then ac < bc. (iv) If a > b and b > c, then a > c. (v) If $a \neq 0$, then $a^2 > 0$.

Proof: We proved some of these in class. The only two that are not completely analogous to the ones proved in class are (i) and (v), so we prove those.

(i) Let a > b, i.e., $a - b \in F^+$. Observe that $(a + c) - (b + c) = a - b \in F^+$, so we are done.

(v) Let $a \neq 0$. By the definition of ordered field, we have that $a \in F^+$ or $-a \in F^+$. If $a \in F^+$, then $a \cdot a = a^2$ must be in F^+ as well since F^+ is closed under addition. Similarly, we obtain that $(-a)(-a) = a^2 \in F^+$ where we have used exercise 6(c) from section 1.4 here.

3. Prove or give a counterexample. If the statement is false, modify it to make it correct.

(a) if a > b and c > d, then ac > bd;

This statement is false. A simple counterexample would be -1 > -2 and 0 > -1, but 0 is not larger then 2. However, if we add the condition that b > 0 and d > 0, then it becomes a true statement. To prove this, observe that a > b and c > d > 0 implies by Lemma 1.1 (ii) that ac > bc. Now use that c > d and b > 0 to conclude that bc > bd using Lemma 1.1 (ii) again. Combining these two inequalities by Lemma 1.1 (iv) we have ac > bd.

5. Prove that for $r, s \in \mathbb{Q}$, each of the following inqualities holds. In each case, also determine when equality holds. (a) $r^2 + s^2 \ge 2rs$

Proof: Observe that $r^2 + s^2 - 2rs = (r - s)^2$. Since $r - s \in \mathbb{Q}$, we see that $(r - s)^2 \ge 0$ for all $r, s \in \mathbb{Q}$. Rewriting this, $r^2 + s^2 \ge 2rs$. It is also easy to

see now that equality holds if and only if r = s.

7. A common mistake made by high school algebra students (and, alas, by college calculus students alike) is the following:

$$\frac{a}{b} + \frac{a}{c} = \frac{a}{b+c}.$$

(a) Show that in any field this equation implies that either a = 0 or $b^2 + bc + c^2 = 0$.

Proof: Basically we just need to get common denominators and bring everything to one side:

$$\frac{a(b^2 + c^2 + bc)}{bc(b+c)} = 0$$

Now we use that there are no zero-divisors in a field to conclude that a = 0or $b^2 + c^2 + bc = 0$.

(b) Show that in \mathbb{Q} it holds only when a = 0.

Proof: It clearly holds when a = 0, so we only need to show that $b^2 + c^2 + bc$ can never be zero for $b, c \in \mathbb{Z}$. Suppose that it can be zero, i.e., there are $b, c \in \mathbb{Z}$ so that $b^2 + bc + c^2 = 0$. Dividing both sides by c^2 we get that

$$\left(\frac{b}{c}\right)^2 + \left(\frac{b}{c}\right) + 1 = 0.$$

Making the substitution $x = \frac{b}{c}$, we see that this amounts to having a rational solution to the polynomial $x^2 + x + 1$, which using the quadratic equation we see has no rational roots.

(c) Give an example of a field where $a \neq 0$ and $b^2 + bc + c^2 = 0$ instead.

Proof: The field $\mathbb{Z}/3\mathbb{Z}$ is such a field. Just set b = 1 = c and a = 1. Then $b^2 + bc + c^2 = \overline{3} = \overline{0}$ and $a \neq \overline{0}$.