Sample homework solutions for 1.4 Jim Brown

2. Compute the following in the indicated Z_p.
(b)

$$\frac{1^2 + 2^2 + 3^2 + 4^2}{7^2 + 8^2 + 9^2 + 10^2} \in \mathbb{Z}_{11}.$$

Observe that $7^2 + 8^2 + 9^2 + 10^2 = 294 \equiv 8 \pmod{11}$. Now we compute that $1^2 + 2^2 + 3^2 + 4^2 = 30 \equiv 8 \pmod{11}$, so we have that

$$\frac{1^2 + 2^2 + 3^2 + 4^2}{7^2 + 8^2 + 9^2 + 10^2} \equiv 8(8^{-1}) \equiv 1 \pmod{11}.$$

5. (b) Prove that if $\bar{a} \in \mathbb{Z}_m$ is a zero-divisor, then gcd(a,m) > 1, and conversely, provided $m \nmid a$.

Proof: Let $\bar{a} \in \mathbb{Z}_m$ be a zero-divisor, i.e., $\bar{a} \neq \bar{0}$ and there exists a $\bar{b} \in \mathbb{Z}_m$ so that $\bar{a}\bar{b} = \bar{0}$ and $\bar{b} \neq \bar{0}$. Translated back into the integers, this means that m|ab, i.e., there exists $c \in \mathbb{Z}$ so that cm = ab. Suppose that gcd(a, m) = 1. Then there exists integers $s, t \in \mathbb{Z}$ so that 1 = as + mt. Multiplying this through by b we obtain b = abs + mbt, i.e., b = m(cs + bt). Thus, m|b and so $\bar{b} = \bar{0}$, a contradiction. Thus it must be that gcd(a, m) > 1.

Conversely, suppose that $m \nmid a$ but gcd(a, m) > 1. Note that these conditions show that $gcd(a, m) \neq m$. Let d = gcd(a, m). Since d|m, there exists $s \in \mathbb{Z}$ so that ds = m and similarly there exists $t \in \mathbb{Z}$ so that dt = a. Since $d \neq 1$, we know that $\bar{s} \neq \bar{0}$. Now consider \bar{as} :

$$\bar{a}\bar{s} = \bar{d}\bar{t}\bar{s}$$

$$= \bar{t}\bar{d}\bar{s}$$

$$= \bar{t}\bar{m}$$

$$= \bar{0}.$$

Since $\bar{s} \neq \bar{0}$, this shows \bar{a} must be a zero-divisor.

6. Prove that in any ring *R*:
(a) 0 ⋅ a = 0

Proof: Just copy down Lemma 1.1. ■

(c) (-a)(-b) = ab for all $a, b \in R$.

Proof: We first show that -(-a) = a for any $a \in R$. We use here that additive inverses are unique. So -(-a) is the additive inverse of the element -a, i.e., the unique solution of the equation x + (-a) = 0. However, we also know that a satisfies this equation since -a is the additive inverse of a, thus a = -(-a) by the uniqueness.

Now we show that (-a)b = -(ab) = a(-b). Note that -(ab) is the unique solution of the equation x + ab = 0. However, a(-b) is also a solution because a(-b) + ab = a(-b+b) = a(0) = 0 where we have used the distributive property and part (a). Thus we must have a(-b) = -(ab). A similar argument shows that (-a)b = -(ab).

Now we are in a position to prove that (-a)(-b) = ab. First observe that by what we have just shown we have (-a)(-b) = -a(-b). Applying it again we get -a(-b) = -(-ab). Now we use the first part to see that -(-ab) = ab. Thus, (-a)(-b) = ab.

7. Suppose that R is an integral domain, $c, x, y \in R$, and $c \neq 0$. Prove that if cx = cy, then x = y.

Proof: Using that cx = cy, we can add -cy to both sides of the equation to obtain cx - cy = 0. Now we use the distributive property to get that c(x - y) = 0. Since we are in an integral domain there are no zero divisors, so either c = 0 or x - y = 0. However we assumed $c \neq 0$, so it must be that x - y = 0, i.e., x = y.