
Sample homework solutions for 1.3

Jim Brown

8. Determine the last digit of 3400; then the last two digits. Determine the
last digit of 799.

Note that the last digit of an integer n is precisely the number a so that
n ≡ a(mod 10). Similarly, the last two digits is the number b so that n ≡

b(mod 100). Observe that 34 = 81 ≡ 1(mod 10). Thus, we have that

3400 = (34)100

≡ 1100(mod 10)

≡ 1(mod 10).

Thus, the last digit of 3400 must be 1.
Observe now that 38 = 6561 ≡ 61(mod 100). We continue with this pattern:

316
≡ 61 · 61(mod 100)

≡ 21(mod 100)

332
≡ 21 · 21(mod 100)

≡ 41(mod 100)

364
≡ 81(mod 100)

3128
≡ 61(mod 100)

3256
≡ 21(mod 100).

Now observe that 400 = 256 + 128 + 16, so we have

3400 = 3256
· 3128

· 316

≡ 21 · 61 · 61(mod 100)

≡ 41(mod 100).

Thus, the last two digits of 3400 are 4 and 1.
Observe that 74 = 2401 ≡ 1(mod 10). Writing 99 = 24(4) + 3, we have

799 = (74)2473

≡ 73(mod 10)

≡ 3(mod 10).

Thus the last digit of 799 is 3.
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17. Suppose m and n are positive integers. Show that 3m + 3n + 1 cannot
be a perfect square.

Proof: Observe that any perfect square must be congruent to 0, 1, or
4 modulo 8. One sees this by checking all possible cases, i.e., looking at
02(mod 8), 12(mod 8), 22(mod 8), . . . , 72(mod 8). Also note that 32 ≡ 1(mod 8).
Now we can write m = 2q1 + r1 and n = 2q2 + r2 for 0 ≤ r1, r2 < 2. We
want to show that 3m + 3n + 1 cannot be congruent to 0, 1, or 4 modulo 8,
which will show it cannot be a perfect square. Note that

3m = 32q1+r1 = (32)q13r1 ≡ 3r1(mod 8).

Similarly we have 3n ≡ 3r2(mod 8). Now there are only a few cases to check
as the only possibilities for r1 and r2 are 0, 1, and 2.
Case 1: If r1 = r2 = 0, then 3m + 3n + 1 ≡ 1 + 1 + 1 ≡ 3(mod 8). Since 3
is not a possibility for a perfect square, this shows we cannot have a perfect
square in this case.
Case 2: If r1 = 0, r2 = 1, then 3m + 3n + 1 ≡ 5(mod 8), again an impossibil-
ity for a perfect square. Note this case also handles the case of r1 = 1 and
r2 = 0 by symmetry of the equation.
Case 3: If r1 = r2 = 1, then 3m + 3n + 1 ≡ 7(mod 8), again an impossibility
for a perfect square.
�

21. (c) Use the Chinese Remainder Theorem, Theorem 3.7, to solve the
following simultaneous congruences:

x ≡ 3(mod 4),

x ≡ 4(mod 5),

x ≡ 3(mod 7).

We begin by solving the simultaneous congruences

x ≡ 3(mod 4),

x ≡ 4(mod 5).

Observe that 1 = 5(1) + 4(−1). Therefore a solution to this set of congru-
ences is given by x = 3(5) + 4(−4) = −1. We could either leave it in this
form or convert it to a positive solution modulo 20. The positive solution
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would then be x = 19.
Now we solve the simultaneous congruences

x ≡ 19(mod 20),

x ≡ 3(mod 7).

Observe that 1 = 7(3) + 20(−1). Therefore a solution to this set of congru-
ences is given by x = 19(7(3)) + 3(−20) = 339. The least common multiple
of 20 and 7 is 140, so the solution reduces to x ≡ 59(mod 140). Thus, the
smallest positive solution to the original 3 congruences is x = 59.


