Sample homework solutions for 1.3 Jim Brown

8. Determine the last digit of 3^{400} ; then the last two digits. Determine the last digit of 7^{99} .

Note that the last digit of an integer n is precisely the number a so that $n \equiv a \pmod{10}$. Similarly, the last two digits is the number b so that $n \equiv$ b(mod 100). Observe that $3^4 = 81 \equiv 1 \pmod{10}$. Thus, we have that

$$
3^{400} = (3^4)^{100}
$$

\n
$$
\equiv 1^{100} \text{(mod 10)}
$$

\n
$$
\equiv 1 \text{(mod 10)}.
$$

Thus, the last digit of 3^{400} must be 1.

Observe now that $3^8 = 6561 \equiv 61 \pmod{100}$. We continue with this pattern:

$$
3^{16} \equiv 61 \cdot 61 \pmod{100}
$$

\n
$$
\equiv 21 \pmod{100}
$$

\n
$$
3^{32} \equiv 21 \cdot 21 \pmod{100}
$$

\n
$$
\equiv 41 \pmod{100}
$$

\n
$$
3^{64} \equiv 81 \pmod{100}
$$

\n
$$
3^{128} \equiv 61 \pmod{100}
$$

\n
$$
3^{256} \equiv 21 \pmod{100}.
$$

Now observe that $400 = 256 + 128 + 16$, so we have

$$
3^{400} = 3^{256} \cdot 3^{128} \cdot 3^{16}
$$

$$
\equiv 21 \cdot 61 \cdot 61 \pmod{100}
$$

$$
\equiv 41 \pmod{100}.
$$

Thus, the last two digits of 3^{400} are 4 and 1. Observe that $7^4 = 2401 \equiv 1 \pmod{10}$. Writing $99 = 24(4) + 3$, we have

$$
7^{99} = (7^4)^{24}7^3
$$

\n
$$
\equiv 7^3 \pmod{10}
$$

\n
$$
\equiv 3 \pmod{10}.
$$

Thus the last digit of 7^{99} is 3.

17. Suppose m and n are positive integers. Show that $3^m + 3^n + 1$ cannot be a perfect square.

Proof: Observe that any perfect square must be congruent to 0, 1, or 4 modulo 8. One sees this by checking all possible cases, i.e., looking at 0^2(mod 8) , 1^2(mod 8) , 2^2(mod 8) , ..., 7^2(mod 8) . Also note that $3^2 \equiv 1 \text{(mod 8)}$. Now we can write $m = 2q_1 + r_1$ and $n = 2q_2 + r_2$ for $0 \le r_1, r_2 < 2$. We want to show that $3^m + 3^n + 1$ cannot be congruent to 0, 1, or 4 modulo 8, which will show it cannot be a perfect square. Note that

$$
3^m = 3^{2q_1+r_1} = (3^2)^{q_1} 3^{r_1} \equiv 3^{r_1} (\text{mod } 8).
$$

Similarly we have $3^n \equiv 3^{r_2} \pmod{8}$. Now there are only a few cases to check as the only possibilities for r_1 and r_2 are 0, 1, and 2.

Case 1: If $r_1 = r_2 = 0$, then $3^m + 3^n + 1 \equiv 1 + 1 + 1 \equiv 3 \pmod{8}$. Since 3 is not a possibility for a perfect square, this shows we cannot have a perfect square in this case.

Case 2: If $r_1 = 0, r_2 = 1$, then $3^m + 3^n + 1 \equiv 5 \pmod{8}$, again an impossibility for a perfect square. Note this case also handles the case of $r_1 = 1$ and $r_2 = 0$ by symmetry of the equation.

Case 3: If $r_1 = r_2 = 1$, then $3^m + 3^n + 1 \equiv 7 \pmod{8}$, again an impossibility for a perfect square.

21. (c) Use the Chinese Remainder Theorem, Theorem 3.7, to solve the following simultaneous congruences:

$$
x \equiv 3 \pmod{4},
$$

\n
$$
x \equiv 4 \pmod{5},
$$

\n
$$
x \equiv 3 \pmod{7}.
$$

We begin by solving the simultaneous congruences

■

$$
x \equiv 3 \pmod{4},
$$

$$
x \equiv 4 \pmod{5}.
$$

Observe that $1 = 5(1) + 4(-1)$. Therefore a solution to this set of congruences is given by $x = 3(5) + 4(-4) = -1$. We could either leave it in this form or convert it to a positive solution modulo 20. The positive solution

would then be $x = 19$. Now we solve the simultaneous congruences

$$
x \equiv 19 \pmod{20},
$$

$$
x \equiv 3 \pmod{7}.
$$

Observe that $1 = 7(3) + 20(-1)$. Therefore a solution to this set of congruences is given by $x = 19(7(3)) + 3(-20) = 339$. The least common multiple of 20 and 7 is 140, so the solution reduces to $x \equiv 59 \pmod{140}$. Thus, the smallest positive solution to the original 3 congruences is $x = 59$.