Sample homework solutions for 1.2 Jim Brown

4. a. Prove that if a|x and b|y, then ab|xy.

Proof: Using the definition of divisibility, we see that there exists $s, t \in \mathbb{Z}$ so that as = x and bt = y. Multiplying these together we have abst = xy, i.e., ab|xy.

b. Prove that if $d = \gcd(a, b)$, then $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Proof: The fact that $d = \gcd(a, b)$ tells us that d|a and d|b, i.e., there exists $s, t \in \mathbb{Z}$ so that ds = a and dt = b. In light of this, what we are trying to show is that $\gcd(s, t) = 1$ as $s = \frac{a}{d}$ and likewise for t. Using that d is the greatest common divisor of a and b we have that there exists $m, n \in \mathbb{Z}$ so that d = am + bn. Dividing each side by d we obtain 1 = sm + tn. Now apply Corollary 2.4 to conclude that $\gcd(s, t) = 1$.

8. Suppose $a, b, n \in \mathbb{N}$, gcd(a, n) = 1, and gcd(b, n) = 1. Prove or give a counterexample: gcd(ab, n) = 1.

Proof: We prove this by contradiction. Suppose that gcd(ab, n) = d and d > 1. The fundamental theorem of arithmetic shows that there exists a prime p so that p|d since d > 1. In particular, since d|n and d|ab, we have that p|n and p|ab. Using Proposition 2.5 we see that p|ab implies that p|a or p|b. However, this would give that either p|gcd(a, n) or p|gcd(b, n), a contradiction as they are both assumed to be 1. Thus it must be that d = 1.

9. Prove that if p is prime and $p|(a_1 \ldots a_n)$, then $p|a_j$ for some $j, 1 \le j \le n$.

Proof: We prove this statement by induction. The base case of n = 2 says that if p|ab then p|a or p|b. This is precisely the statement of Proposition 2.5 so the base case is true. Now suppose that if $p|(a_1 \ldots a_k)$ then $p|a_j$ for some $j, 1 \leq j \leq k$. (our induction hypothesis) Suppose that $p|(a_1a_2 \ldots a_ka_{k+1})$. In particular, we can group the term $a_1 \ldots a_ka_{k+1}$ as $(a_1 \ldots a_k)a_{k+1}$ and use Proposition 2.5 again to conclude that $p|(a_1 \ldots a_k)$ or $p|a_{k+1}$. If $p|a_{k+1}$ we are done. If not, $p|(a_1 \ldots a_k)$ and we apply our induction hypothesis to conclude that $p|a_j$ for some $j, 1 \leq j \leq k$. Thus, by induction the statement

holds for all n.

11. Prove that there are no integers m, n so that $\left(\frac{m}{n}\right)^2 = 2$.

Proof: Suppose that there are integers m, n so that $\left(\frac{m}{n}\right)^2 = 2$. We may assume that gcd(m, n) = 1 for if not we could cancel it out. This is just saying we put the fraction in lowest terms. We can rewrite our equality as

$$m^2 = 2n^2.$$

In particular, it must be the case that $2|m^2$. Applying Proposition 2.5 we see that 2|m, i.e., m is even. Thus there exists an integer s so that m = 2s. We can again rewrite our equation as

$$(2s)^2 = 2n^2.$$

In particular, we have that $2s^2 = n^2$. Applying the same argument as above we obtain that 2|n. This is a contradiction though as we assumed gcd(m,n) = 1 and we have just shown that 2|m and 2|n. Thus it must be the case that there are no such integers m and n.