Sample homework solutions for 1.1 Jim Brown

4. Prove the following by induction:

b. The sum of the first n odd integers is n^2 .

Proof: We prove the statement by induction. The base case of n = 1 is clear as $1 = 1^2$. Suppose the statement is true for n = k, i.e.,

$$1 + 3 + 5 + \dots + 2k - 1 = k^2$$

We now consider the case of n = k + 1:

$$1 + 3 + 5 + \dots + 2k + 1 = (1 + 3 + 5 + \dots + 2k - 1) + 2k + 1$$

= $k^2 + 2k + 1$ (by our induction hypothesis)
= $(k + 1)^2$.

Thus, we see the statement holds for n = k + 1. Therefore by induction the statement is true for all positive integers n.

d. For $n \ge 1$, $n^3 - n$ is divisible by 3.

Proof: We prove the statement by induction. The base case of n = 1 is clear as $1^3 - 1 = 0$, which is divisible by 3. Suppose the statement is true for n = k, i.e., there exists an integer m so that $3m = k^3 - k$. We now consider the case of n = k + 1. Observe that we have

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1 = (k^3 - k) + 3(k^2 + k) = 3m + 3(k^2 + k)$$
 (by our induction hypothesis)
 = 3(m + k^2 + k).

Thus, we see that $3|(k+1)^2 - (k+1)$. Therefore by induction the statement is true for all positive integers n.

h. $3^n \ge 2n+1$ for all $n \in \mathbb{N}$.

Proof: We prove the statement by induction. The base case of n = 1 follows as we observe that $3^1 = 3 = 2(1) + 1$. Suppose that $3^k \ge 2k + 1$. Observe

that we have

$$3^{k+1} = 3(3^k)$$

$$\geq 3(2k+1) \quad \text{(by our induction hypothesis)}$$

$$= 6k+3$$

$$\geq 2(k+1)+1 \quad \text{(since } 6k \geq 2k \text{ for } k \geq 1\text{)}.$$

Thus, we see that $3^{k+1} \ge 2(k+1) + 1$. Hence, by induction the statement is true for all $n \in \mathbb{N}$.

6. **a.** Using the original definition of $\binom{n}{k}$, prove that

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Proof: The original definition of $\binom{n}{k}$ was that it is the number of ways to choose a k element subset from a set of n elements. We can split our set of subsets into the subsets that contain n and the subsets that do not contain n. The subsets that do not contain n are precisely all of the subsets of the n-1 element set $\{1, 2, \ldots, n-1\}$. Thus, there are $\binom{n-1}{k}$ possible subsets that do not contain n. If we desire a k element subset that must contain n, what we are really asking for it k-1 element subsets of the set $\{1, 2, \ldots, n-1\}$. There are precisely $\binom{n-1}{k-1}$ such sets. Thus, the total number of k element subsets of an n element set is $\binom{n-1}{k} + \binom{n-1}{k-1}$, as desired.

b. Prove by induction on *n* that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Proof: The statement is clear for the base case of n = 1 as we can easily check the equation for k = 0, 1. Now suppose that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Observe that we have

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$
 (by part a.)

$$= \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-(k-1))!}$$
 (by our induction hypothesis)

$$= \frac{n!(n-k+1)}{k!(n-k+1)!} + \frac{n!k}{k!(n-k+1)!}$$

$$= \frac{(n+1)!}{k!(n+1-k)!}.$$

Thus, by induction, the statement is true for all positive integers n.