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Jim Brown

1. Suppose f(x) ∈ C[x] is a monic polynomial of degree n with roots
c1, c2, . . . cn. Prove that the sum of the roots is −an−1 and their product is
(−1)na0.

Proof: We proceed by induction on the degree of f(x). The case of n = 2 is
the base case and handled as follows. Let f(x) = x2 + a1x + a0 ∈ C[x] with
roots c1, c2. Then we can write f(x) = (x−c1)(x−c2) = x2−(c1+c2)x+c1c2.
Equating the coefficients we have that a1 = −(c1 + c2) and a0 = c1c2, i.e,.
−a1 = the sum of the roots and (−1)2 = product of the roots. Now suppose
there is some positive integer k so that any polynomial of degree k satisfies
the conditions we desire. Let f(x) = xk+1 + akx

k + · · · + a1x + a0 ∈ C[x]
with roots given by c1, . . . , ck+1. The fact that the ci’s are the roots of f(x)
allows one to write

f(x) = (x − c1)(x − c2) · · · (x − ck+1). (1)

We can apply the induction hypothesis to the polynomial (x−c1) · · · (x−ck)
to conclude that

(x − c1) · · · (x − ck) = xk − (c1 + · · · + ck)x
k−1 + · · · + (−1)kc1 · · · ck.

Now we multiply this by (x − ck+1) on both sides to obtain:

f(x) = (x − c1) · · · (x − ck)(x − ck+1)

= (xk − (c1 + · · · + ck)x
k−1 + · · · + (−1)kc1 · · · ck)(x − ck+1)

= xk+1 − (c1 + · · · + ck)x
k + · · · + (−1)kc1 · · · ck − ck+1x

k − · · · − (−1)kc1 · · · ckck+1

= xk+1 − (c1 + · · · + ck+1)x
k + · · · + (−1)k+1c1 · · · ck+1,

i.e., −ak = c1 + · · ·+ ck+1 and (−1)k+1a0 = c1 · · · ck+1. Thus, the statement
is true for all degrees n by induction. �
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contains any polynomial value p(
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It is clear that Q[

√
6] ⊂ Q[

√
2,
√

3] as
√

6 =
√

2 ·
√

3 ∈ Q[
√

2,
√

3]. To
show the reverse containment does not hold, suppose

√
2 ∈ Q[

√
6]. Then

there exists a, b ∈ Q so that
√

2 = a + b
√

6. Squaring both sides we get
2 = a2 + 6b2 + 2ab

√
6. Solving this for

√
6 we see that this would imply√

6 ∈ Q, a contradiction. The only problem with solving for
√

6 would
occur if either a or b was 0. It is easy to see that b 6= 0 since

√
2 /∈ Q.

Similarly, if a = 0, then
√

2 = b
√

6, i.e.,
√

3 = 1

b
∈ Q, a contradiction. Thus,√

2 /∈ Q[
√

6]. �

3. Find the splitting fields of the following polynomials in Q[x]:

(c) f(x) = x4 − 9

The first step is to determine the roots of f(x). As we saw in section 2.3,
the roots are given by 4

√
9ωj for 1 ≤ j ≤ 3 with ω the 4th root of unity,

which is i. Note that 4
√

9 =
√

3. Thus, the roots are
√

3,
√

3i,−
√

3,−
√

3i.
Let K be the splitting field of f(x).
Claim: K = Q[

√
3, i].

Proof: Observe that K ⊂ Q[
√

3, i] because all of the roots of f(x) are con-
tained in Q[

√
3, i] and K is by definition the smallest field containing all of

the roots of f(x). Now we must show that
√

3 and i are necessarily in K as
well. It is clear that

√
3 ∈ K as

√
3 is a root of f(x) and K must contain

all the roots. Since K contains
√

3, it must also contain

√
3

3
. Since

√
3i is

a root, it is in K as well. Now using that K is closed under multiplication

we have that i =

√
3

3

√
3 ∈ K. Thus, Q[

√
3, i] ⊂ K and the claim is shown. �

4. Decide whethe each of the following subsets of R is a ring, a field, or
neither.
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(a)
{

a + b 3
√

2 : a, b ∈ Q
}

This is not a ring as it is not closed under multiplication: 3
√

2 · 3
√

2 = 3
√

4, but
we claim 3

√
4 is not in this set. Suppose there exists a, b ∈ Q so that 3

√
4 =

a+b 3
√

2, i.e., 3
√

4−b 3
√

2 = a. Squaring both sides we get 2 3
√

2−4b+b2 3
√

4 = a2,
i.e., 2 3

√
2 − b2 3

√
4 = a2 + 4b. Now we substitute a + b 3

√
2 for 3

√
4 to obtain

the equation
(2 + b3)

3
√

2 = a2 + 4b − ab2.

Since b ∈ Q, we know that b3 6= −2 since 3
√

2 /∈ Q, so we can divide by
(2 + b3) to obtain

3
√

2 =
a2 + 4b − ab2

2 + b3
∈ Q

a contradiction. Thus 3
√

4 is not in the set.

7. Let f(x) ∈ R[x].

(a) Prove that the complex roots of f(x) come in “conjugate pairs”; i.e.,
α ∈ C is a root of f(x) if and only if α is also a root.

Proof: Let α be a root of f(x) = anzn + · · · + a1z + a0 ∈ R[x]. Then using
that z = z, z + w = z + w, zw = z · w, and x = x for all z, w ∈ C and all
x ∈ R we have

0 = anαn + · · · + a1α + a0 ⇐⇒
0 = anαn + · · · + a1α + a0 ⇐⇒
0 = anαn + · · · + a1α + a0 ⇐⇒
0 = anαn + · · · + a1α + a0.

Thus we see that f(α) = 0 if and only if f(α) = 0. �

(b) Prove that the only irreducible polynomials in R[x] are linear polyno-
mials and quadratic polynomials ax2 + bx + c with b2 − 4ac < 0.

Proof: The condition b2 −4ac < 0 is the condition that the quadratic poly-
nomial has no real roots, as one can easily see from the quadratic equation.
Therefore, the statement is to prove that we can reduce any polynomial
down to just linear factors over R[x] and quadratic polynomials in R[x] with
complex roots. The statement is clear for polynomials of degree 1 and 2,
so we proceed by induction on the degree of the polynomial, taking degree
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3 as our base case. Let f(x) ∈ R[x] have degree 3. Let α1, α2 and α3 be
the roots of f(x). If one of them is complex, say α1, then necessarily one of
the others, say α2 is the complex conjugate of α1 by part (a) above. Thus
we have that α3 must be real. So f(x) = (x − α3)(x

2 + (α1 + α1)x + α1α1.
Since α1 + α1 and α1α1 are both real numbers, we have factored our poly-
nomial as claimed. If on the other hand all the αi are real, then we have
f(x) = (x − α1)(x − α2)(x − α3) are we are done with the base case. Now
suppose that any polynomial of degree j ≤ k for some positive integer k can
be factored into a product of linear and irreducible quadratic terms over
R[x]. Let f(x) be a polynomial of degree k + 1. Suppose f(x) has a real
root α. Then there exists a polynomial g(x) ∈ R[x] of degree k so that
f(x) = (x − α)g(x). Now we apply the induction hypothesis to g(x) and
have that we can factor f(x) into a product of linear terms and irreducible
quadratic terms over R[x]. If f(x) does not have a real root, then necessary
it has a complex root α. By part (a), α is also a root of f(x). Thus there
exists a g(x) ∈ R[x] of degree k−1 so that f(x) = (x2 +(α+α)x+αα)g(x).
Applying the induction hypothesis to g(x) again gives our result. Thus,
by induction, we have that every polynomial in R[x] can be factored into
irreducible linear and quadratic polynomials, meaning these are the only
irreducible polynomials over R[x]. �


