Sample homework solutions for 3.1 Jim Brown

5. Suppose $\deg(f(x)) = n$, $\deg(g(x)) = m$, and $m \ge n$. Prove or give a counterexample:

(a) $\deg(f(x) + g(x)) = m$.

This statement is false. Consider the polynomial ring $(\mathbb{Z}/2\mathbb{Z})[x]$ and polynomials f(x) = x + 1 and g(x) = x. Then f(x) + g(x) = 1, which has degree 0.

(b) $\deg(f(x) \cdot g(x)) = m + n$.

This statement is false as well. Consider the polynomial ring $(\mathbb{Z}/4\mathbb{Z})[x]$ and polynomials f(x) = 2x + 1 and g(x) = 2x. Then $f(x) \cdot g(x) = 2x$, which has degree 1.

6. Prove that if F is a field, $f(x) \in F[x]$, and $\deg(f(x)) = n$, then f(x) has at most n roots in F.

Proof: We proceed by induction on the degree of f(x). Suppose f(x) is a polynomial of degree 1, i.e., f(x) = ax + b for some $a, b \in F$. Then $-\frac{b}{a} \in F$ is a root of this polynomial and the only root, so the base case of n = 1 is true. Now suppose that for some positive integer k we know that any polynomial of degree k has at most k roots in F. Let f(x) be a polynomial of degree k + 1. If f(x) has no roots in F we are done. Therefore assume f(x) has at least one roots, call it c. Corollary 1.5 goves that (x-c) divides f(x). So there exists a polynomial $g(x) \in F[x]$ with $\deg(g(x)) = k$ and f(x) = (x - c)g(x). By our induction hypothesis we know that g(x) has at most k roots in F, thus we see that f(x) can have at most k + 1 roots in F. Therefore by induction we have that a polynomial of degree n can have at most n roots in F.

11. Find all odd prime numbers p so that $x + \overline{2}$ is a factor of $f(x) = x^4 + x^3 + x^2 - x + \overline{1} \in (\mathbb{Z}/p\mathbb{Z})[x].$

Recall that Corollary 1.5 gives that $x + \overline{2}$ is a factor of f(x) if and only if $-\overline{2}$ is a root of f(x). This says that we need $(-2)^4 + (-2)^3 + (-2)^2 - (-2) + 1 \equiv 0 \pmod{p}$, i.e., we must have $15 \equiv 0 \pmod{p}$. Since the only primes that

satisfy this condition are 3 and 5, we see that p must be 3 or 5.

14. For each of the following numbers c, find an irreducible polynomial in $\mathbb{Q}[x]$ that has the number $c \in \mathbb{C}$ as a root:

(d)
$$\sqrt{1+\sqrt{3}}$$

The first step is to find a polynomial that $\sqrt{1 + \sqrt{3}}$ is a root of, and then either show it is irreducible or find its irreducible factor that $\sqrt{1 + \sqrt{3}}$ is a root of. We begin by squaring $\sqrt{1 + \sqrt{3}}$ to obtain

$$(\sqrt{1+\sqrt{3}})^2 = 1 + \sqrt{3}.$$

Since we have a $\sqrt{3}$ left over, we square again to obtain

$$(\sqrt{1+\sqrt{3}})^4 = 4 + 2\sqrt{3}.$$

Now we can combine these two and obtain that $\sqrt{1 + \sqrt{3}}$ is a root of the polynomial $f(x) = x^4 - 2x^2 - 2$. Now to show this is irreducible one must show that there are no polynomials of lower degree that multiply to give this polynomial. Checking there is no degree 1 factor is not difficult. Make the substitution $y = x^2$ and then solve the resulting quadratic equation to see that there are no roots in \mathbb{Q} . Then one must check that there are not 2 degree 2 polynomials that multiply to give f(x). Assume there are $g(x) = ax^2 + bx + c$ and $h(x) = \alpha x^2 + \beta x + \gamma$ so that f(x) = g(x)h(x). If one works out the equations resulting from the coefficients one will reach a contradiction. The easiest way to see this polynomial is irreducible however is to use Eisenstein's criterion, a theorem that we will get to in Section 3.3.