
Sample homework solutions for 3.1

Jim Brown

5. Suppose deg(f(x)) = n, deg(g(x)) = m, and m ≥ n. Prove or give a
counterexample:

(a) deg(f(x) + g(x)) = m.

This statement is false. Consider the polynomial ring (Z/2Z) [x] and poly-
nomials f(x) = x+1 and g(x) = x. Then f(x)+g(x) = 1, which has degree
0.

(b) deg(f(x) · g(x)) = m + n.

This statement is false as well. Consider the polynomial ring (Z/4Z) [x] and
polynomials f(x) = 2x+1 and g(x) = 2x. Then f(x) · g(x) = 2x, which has
degree 1.

6. Prove that if F is a field, f(x) ∈ F [x], and deg(f(x)) = n, then f(x) has
at most n roots in F .

Proof: We proceed by induction on the degree of f(x). Suppose f(x) is a
polynomial of degree 1, i.e., f(x) = ax + b for some a, b ∈ F . Then − b

a
∈ F

is a root of this polynomial and the only root, so the base case of n = 1
is true. Now suppose that for some positive integer k we know that any
polynomial of degree k has at most k roots in F . Let f(x) be a polynomial
of degree k + 1. If f(x) has no roots in F we are done. Therefore assume
f(x) has at least one roots, call it c. Corollary 1.5 goves that (x− c) divides
f(x). So there exists a polynomial g(x) ∈ F [x] with deg(g(x)) = k and
f(x) = (x − c)g(x). By our induction hypothesis we know that g(x) has at
most k roots in F , thus we see that f(x) can have at most k + 1 roots in F .
Therefore by induction we have that a polynomial of degree n can have at
most n roots in F . �

11. Find all odd prime numbers p so that x + 2 is a factor of f(x) =
x4 + x3 + x2 − x + 1 ∈ (Z/pZ) [x].

Recall that Corollary 1.5 gives that x+2 is a factor of f(x) if and only if −2
is a root of f(x). This says that we need (−2)4 +(−2)3 +(−2)2− (−2)+1 ≡
0(mod p), i.e., we must have 15 ≡ 0(mod p). Since the only primes that
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satisfy this condition are 3 and 5, we see that p must be 3 or 5.

14. For each of the following numbers c, find an irreducible polynomial in
Q[x] that has the number c ∈ C as a root:

(d)
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The first step is to find a polynomial that
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3 is a root of, and then

either show it is irreducible or find its irreducible factor that
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root of. We begin by squaring
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Since we have a
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3 left over, we square again to obtain
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Now we can combine these two and obtain that
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3 is a root of the
polynomial f(x) = x4 − 2x2 − 2. Now to show this is irreducible one must
show that there are no polynomials of lower degree that multiply to give
this polynomial. Checking there is no degree 1 factor is not difficult. Make
the substitution y = x2 and then solve the resulting quadratic equation
to see that there are no roots in Q. Then one must check that there are
not 2 degree 2 polynomials that multiply to give f(x). Assume there are
g(x) = ax2 + bx + c and h(x) = αx2 + βx + γ so that f(x) = g(x)h(x). If
one works out the equations resulting from the coefficients one will reach a
contradiction. The easiest way to see this polynomial is irreducible however
is to use Eisenstein’s criterion, a theorem that we will get to in Section 3.3.


