
Sample homework solutions for 2.5

Jim Brown

1. Give an algebraic verification that if |x − y| = |x + y|, x, y ∈ R, then
either x = 0 or y = 0.

Proof: Let x, y ∈ R so that |x − y| = |x + y|. Squaring both sides removes
the absolute values (remember these are real numbers, so the square of a
real number is positive!) and so we have (x − y)2 = (x + y)2. Equivalently,
−2xy = 2xy, i.e., 4xy = 0. Thus, x = 0 or y = 0. �

3. Prove Lemma 5.3.

Proof: We proved this in class, please make sure you understand the proof!
�

5. Let f(z) = ζz + c, ζ = eiθ 6= 1.

(a) Show that p = c/(1 − ζ) is a fixed point of f .

Proof: This is merely plugging in p to f(z) and simplifying to see you get
p back. Alternatively, one can solve the equation f(p) = p and see that one
gets p = c/(1 − ζ). This second approach would allow you to find the fixed
points even if they were not given, while the first method just allows you to
verify what a fixed point is if someone gives you one. �

(b) Show that f(z) − p = ζ(z − p), and conclude that f is a rotation of C

about p through an angle of θ.

Proof: The first part of this problem is again a direct verification.

f(z) − p = ζz + c − p

= ζz + c −
c

(1 − ζ)

= ζz +
c(1 − ζ)

(1 − ζ)
−

c

(1 − ζ)

= ζz +
(c − cζ − c)

(1 − ζ)

= ζz − ζ
c

(1 − ζ)
= ζ(z − p).
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For the last part, if you do not see that this is a rotation around p, you
should pick some specific examples and work them out. In particular, we
know that f(z) = ζz is a rotation around the point 0. By putting the p into
the equation you are merely translating the 0 over to the point p and then
rotating around the point p. �

7. Find formulas for the following isometries f : C → C.

(a) rotation about 2 + 3i through angle π/3.

The formula for this one follows directly from problem 5(b). Just substitute

p = 2 + 3i and ζ = e
πi

3 . So the formula is

f(z) = e
πi

3 (z − (2 + 3i)) + (2 + 3i).

(b) reflection in the line 5z + (3 − 4i)z = −4 + 2i.

We use Proposition 5.6 for this problem. In particular, we know our isometry
is given by f(z) = ζz + c. Let z = x+ iy be on the given line. Then we have

−4 + 2i = 5(x + iy) + (3 − 4i)(x − iy)

= 5x + 5yi + 3x − 4y − 3yi − 4xi

= (8x − 4y) + (2y − 4x)i

Equating real and imaginary parts we get that y = 2x + 1. So now that we
know what line we are working with, we can easily solve the problem. We
know that z = i and z = −1/2 are both points on this line. Therefore, they
are fixed points of our isometry (it reflects over the line, so it must leave the
line fixed.) So we have

−
1

2
= f(−

1

2
) = −

1

2
ζ + c

i = f(i) = iζ + c = −iζ + c.

Subtracting these equations we get that

−
1

2
− i = −

1

2
ζ + iζ = ζ(−

1

2
+ i),
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i.e.,

ζ =
−1

2
− i

−1

2
+ i

= −
3

5
+

4

5
i.

Now plug this back into the equation i = −iζ + c and solve for c to obtain

c = −
4

5
+

2

5
i.

Thus, our isometry is given by

f(z) =

(

−
3

5
+

4

5
i

)

z +

(

−
4

5
+

2

5
i

)

.

(c) glide reflection with axis z + z = 2 and translation vector 3i.

Note that for a glide reflection one always has the axis of reflection parallel
to the translation vector, so in this case we see the axis is going to have to
be a vertical line. Set z = x + iy. Then we have

2 = z + z

= (x + iy) + (x − iy)

= 2x

i.e., the axis of reflection is the line x = 1. This makes the problem much
easier as we know the isometry must be of the form f(z) = ζz + c and we
can determine where points map now. In particular, we know that 1 must
stay on the line x = 1 and translate up by 3i, so it must map to 1 + 3i.
Similarly, we know that 1 + i must map to 1 + 4i. Therefore we have the
equations

1 + 3i = f(1) = ζ · 1 + c

1 + 4i = f(1 + i) = ζ(1 − i) + c.

Solving these simultaneous equations we obtain ζ = −1 and c = 2 + 3i.
Thus our map is f(z) = −z + (2 + 3i).


