
MATH 580 — SECOND MIDTERM EXAM

February 27, 2006

NAME: Solutions

1. Do not open this exam until you are told to begin.

2. This exam has 10 pages including this cover. There are 10 problems.

3. Do not separate the pages of the exam.

4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.

5. If you are unsure whether you can quote a result from class or the book, please ask.

6. Please turn off all cell phones.

PROBLEM POINTS SCORE

1 12

2 12

3 11

4 12

5 6

6 6

7 8

8 12

9 10

10 8

TOTAL 100
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1. (3 points each) (a) Define the term “integral domain”:

An integral domain is a commutative ring R with no zero divisors, i.e., if a, b ∈ R and ab = 0R,
then a = 0R or b = 0R.

(b) Define the term “field”:

A field is a commutative ring F so that every nonzero element of F is a unit, i.e., if a ∈ F and
a 6= 0, then there exists b ∈ F so that ab = 1F .

(c) Give an example of an integral domain that is not a field. (Justify your answer!)

The integers Z is an example of an integral domain that is not a field. If mn = 0, then we know
that m = 0 or n = 0. However, 2 ∈ Z is nonzero yet has no inverse in Z.

(d) Give an example of a ring that is not an integral domain. (Justify your answer!)

The ring Z/4Z is a ring as we discussed in class, but 2 · 2 = 0, but 2 6= 0.

2. (3+4+4+4 points) Let z, w ∈ C.

(a) Define z.

If z = a + bi with a, b ∈ R, then z = a − bi.

(b) Prove that z + w = z + w.

Proof: Let z = a + bi and w = c + di with a, b, c, d ∈ R. Then we have

z + w = (a + c) + (b + d)i

= = (a + c) − (b + d)i

= (a − bi) + (c − di)

= z + w.

�

(c) Prove that |z|2 = zz.

Proof: Let z = a + bi with a, b ∈ R. Then we have

|z|2 = a2 + b2

= (a + bi)(a − bi)

= zz.

�

(d) Prove that z = z if and only if z ∈ R.

Proof: Let z = a + bi with a, b ∈ R. If z = z we have that a + bi = a− bi, i.e., b = −b. However,
this implies b = 0 and so z = a ∈ R. Conversely, suppose z ∈ R. Then necessarily we have that
the imaginary part of z is 0, i.e., b = 0. Thus, z = a = z. �
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3. (3+3+3+2 points) Let R be a ring with the following addition and multiplication tables:

+ a b c d e f

a a b c d e f
b b c d e f a
c c d e f a b
d d e f a b c
e e f a b c d
f f a b c d e

· a b c d e f

a a a a a a a
b a b c d e f
c a c e a c e
d a d a d a d
e a e c a e c
f a f e d c b

(a) Is this ring commutative? Give reasons for your answer.

The ring is commutative. If you look at the multiplication table, it is symmetric over the diagonal,
which means that ab = ba for all a, b ∈ R.

(b) What are the zero-divisors in R?

First we must determine which element is 0R. We see that a + x = x for all x ∈ R, so a = 0R.
Now we just observe that c · d = 0R and d · e = 0R, so the zero divisors are c, d, e.

(c) What are the units in R?

First we must determine which element is 1R. We see that bx = x for all x ∈ R, so b = 1R. Now
we just observe that f · f = 1R, so f is a unit.

(d) What familiar ring is this? (No proof is required here.)

Since the only rings we talked about with zero divisors were the rings Z/nZ you should imme-
diately think of these rings. There are 6 elements in this ring, so Z/6Z would be a good guess.
Then just observe that we can identify a ∼ 0, b ∼ 1, c ∼ 2, d ∼ 3, e ∼ 4, and f ∼ 5. We will see
how to rigorously show these are the same rings next term.
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4. (6 points each)(a) Show that Q
(√

7
)

is a field. You may use the fact that Q
(√

7
)

⊂ R and R

is a ring.

Proof: Using that R is a ring, we see we only need to show that Q
(√

7
)

is a subring of R so that

each element has an inverse in Q
(√

7
)

. Let a + b
√

7 and c + d
√

7 be in Q
(√

7
)

.

closed under addition: (a+ b
√

7)+ (c+d
√

7) = (a+ c)+ (b+d)
√

7 ∈ Q
(√

7
)

since a+ c and b+d
are in Q.
closed under multiplication: (a+b

√
7)(c+d

√
7) = (ac+7bd)+(ad+bc)

√
7 ∈ Q

(√
7
)

since ac+7bd
and ad + bc are in Q.
additive identity: 0 = 0 + 0

√
7 ∈ Q

(√
7
)

multiplicative identity: 1 = 1 + 0
√

7 ∈ Q
(√

7
)

additive inverse: −a − b
√

7 is in Q
(√

7
)

since −a,−b ∈ Q.

multiplicative inverse: 1

a+b
√

7
=
(

a

a2
−7b2

)

+
(

−b

a2
−7b2

)√
7 ∈ Q

(√
7
)

since a

a2
−7b2

and −b

a2
−7b2

are in

Q
(√

7
)

Thus we have that Q
(√

7
)

is a field. �

(b) Prove that Q ⊂ Q
(√

7
)

but Q 6= Q
(√

7
)

.

Proof: Let r ∈ Q. Then we have that r = r + 0
√

7 ∈ Q
(√

7
)

, so Q ⊂ Q
(√

7
)

. To show that we

do not have equality, we show that while
√

7 is in Q
(√

7
)

,
√

7 is not in Q. Suppose there exists

a, b ∈ Z so that
(

a

b

)2
= 7. We may assume gcd(a, b) = 1 by cancelling any common factors. Thus

we have that a2 = 7b2. This implies that 7|a2 and since 7 is prime 7|a. So there exists k ∈ Z so
that a = 7k. Substituting this in and cancelling a 7 we have 7k2 = b2. Thus, 7|b2 and hence 7|b.
This implies that 7| gcd(a, b) = 1, clearly a contradiction. Thus no such a and b exist and we see
that 7 /∈ Q. �

5. (6 points) Prove that between any two distinct real numbers there are infinitely many rational
numbers. You may use the fact that between any two distinct real numbers there is at least one
rational number.

Proof: Let x and y be two distinct real numbers with x < y. Suppose that there are only finitely
many rational numbers between x and y, say x < r1 < r2 < · · · < rn < y. Since r1 and r2 are
distinct rational numbers, we know in particular that they are distinct real numbers. Thus there
is a rational number r between r2 and r2. This is a contradiction as r is not in our list and is neces-
sarily between x and y. Thus there must be infinitely many rational numbers between x and y. �

6. (6 points) Prove that additive inverses in a ring are unique.

Proof: Let R be a ring and let a ∈ R. Suppose there exists b, c ∈ R so that a + b = 0R = b + a
and c+a = 0R = a+ c, i.e., we are assuming a has more then one additive inverse. Then we have

b = b + 0R

= b + (a + c) (since a + c = 0R)

= (b + a) + c (by the associativity of addition)

= 0R + c (since b + a = 0R)

= c.

Thus, b = c and we see that additive inverses are in fact unique. �
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7. (3+5 points) (a) List the nth roots of unity.

The nth roots of unity are given by 1, ω, ω2, . . . , ωn−1 where ω = e
2πi

n .

(b) Prove that the sum of the nth roots of unity is 0.

Proof: We need to show that

n−1
∑

k=0

ωk = 0. This is a geometric series, so we have

n−1
∑

k=0

ωk =
1 − ωn

1 − ω
(since ω 6= 1)

= 0 (since ωn = 1 by the definition of nth root of unity.)

8. (4 points each) (a) Show that |eiθ| = 1 for any θ ∈ R.

Proof: Recall that eiθ = cos θ + i sin θ. Thus, |eiθ| =
√

cos2 θ + sin2 θ = 1.

(b) Show that the map f : C → C defined by f(z) = eiθz for some fixed θ ∈ R is an isometry.

Proof: Let z, w ∈ C. Then

|f(z) − f(w)| = |eiθz − eiθw|
= |eiθ||z − w|
= |z − w| (by part (a)).

(c) Let g : C → C be an isometry with g(i) = 1. Show that g maps the circle of radius 6 centered
at i to the circle of radius 6 centered at 1.

Proof: Let z be a point on the circle of radius 6 centered at i. This means that z satisfies the
equation |z − i| = 6. Now observe that we have

|g(z) − 1| = |g(z) − g(i)|
= |z − i| (since g is an isometry)

= 6.

Thus we see that g(z) is on the circle of radius 6 centered at 1, as claimed. �
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9. (5 points each)(a) Find the cube roots of 27.

Let ω be a cube root of unity, i.e., ω = e
2πi

3 . Then the cube roots of 27 are

b = 3

ωb = 3

(

−1

2
+ i

√
3

2

)

ω2b = 3

(

−1

2
− i

√
3

2

)

.

(b) Using part (a) and the formula from class, show that the roots of z3 − 9z − 28 = 0 are
4,−2 +

√
3i,and −2 −

√
3i.

Recall that the solutions to such an equation are given by z =
3
√

A− p

3 3
√

A
for the three different

values of 3
√

A where A = −q

2
+

√

(q

2

)2

+
( p

27

)3

. In this case we have that p = −9 and q = −28,

so A = 27. Therefore, part (a) gives us the three possible values for 3
√

A. Thus we have that the
solutions are

z1 = 3 + 1 = 4

z2 = 3ω + ω−1 = 3ω + ω2 = 2ω + (ω + ω2) = 2ω − 1 = −2 − i
√

3.

z3 = 3ω2 + ω−2 = 3ω2 + ω = 2ω2 + (ω + ω2) = 2ω2 − 1 = −2 + i
√

3

where we have used from Problem 7(b) that 1 + ω + ω2 = 0, i.e., ω + ω2 = −1.

10. (8 points) Let R be a ring and a ∈ R a fixed element. Let S = {ra : r ∈ R}, i.e., S is the set
of multiples of a. Show that S is a subring of R not necessarily with identity. Determine when
1R ∈ S.

Proof: We must go through and verify each of the conditions to be a subring for S. Let ra and
sa be elements of S. Note that by definition all elements of S can be written in this form.
closed under addition: We have ra + sa = (r + s)a ∈ S since r + s ∈ R.
closed under multiplication: We have ra · sa = (ras)a ∈ S since ras ∈ R.
additive identity: Note that 0R ∈ S since 0R = 0Ra.
additive inverse: Observe that −ra = (−r)a ∈ S since −r ∈ R.
Thus we have shown that S is a subring of R that doesn’t necessarily have an identity. In fact,
1R ∈ S if and only if there exists a b ∈ R so that b ·a = 1R. Note this does not mean that R must
be a field as we only require such a b for a and not even necessarily that a is a unit as we only
require that b · a = 1R, not that b · a = 1R = a · b. �


