MATH 580 — FIRST MIDTERM EXAM
January 30, 2006

NAME: Solutions

1. Do not open this exam until you are told to begin.
2. This exam has 9 pages including this cover. There are 11 problems.
3. Write your name on the top of EVERY sheet of the exam!
4. Do not separate the pages of the exam.
5. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
6. If you are unsure whether you can quote a result from class or the book, please ask.
7. Please turn off all cell phones.
PROBLEM | POINTS SCORE

1 10

2 10

3 8

4 10

) 6

6 10

7 10

8 10

9 8

10 8

11 10

TOTAL 100




Name:

1. (3+3+4 points) Let f: X — Y be a function.

a. State the definition of injective.

The function f is injective if whenever f(z1) = f(x2) for some x1,z9 € X, then z1 = xo.
b. State the definition of surjective.

The function f is surjective if for each y € Y there exists an z € X so that f(z) = y.

c. Let X ={1,2,3,4,5} and Y = {a,b,c}. Define a function f : X — Y by f(1) =a, f(2) = b,
fB)=v¢, f(4) =1, and f(5) = b. Is the function f injective? Is it surjective? Be sure to justify
YOUr answer.

The function f is not injective because f(1) = a = f(4) but 1 # 4. The function f is surjective
because f(1) =a, f(2) = b, and f(3) = ¢, i.e., every element of Y has an element of X mapping
to it.

2. (10 points) Find the greatest common divisor of the integers 324 and 148. Find integers m
and n so that the greatest common divisor is equal to 324n 4 148m.

We start by dividing 148 into 324 and obtain:
324 = 148(2) + 28.

Next we divide 28 into 148:
148 = 28(5) + 8.

We now divide 8 into 28:
28 = 8(3) + 4.

Finall we observe that 4 divides evenly into 8 with no remainder, therefore ged(148,324) = 4.
Now we back substitute with the above equations to find m and n:

4 = 324(16) + 148(—35).

3. (8 points) If a|b and ¢|d, show that ac|bd.

Proof: Using the definition of divisibility we see that there exists s,t € Z so that as = b and
ct = d. Multiplying these together we obtain asct = bd, i.e., aclbd. B



4. (3+3+4 points) a. Give a positive integer m so that 0 < m < 21 and m = —4(mod 21).
The integer m = 17 works as 17 — (—4) = 21, which is divisible by 21.
b. Find a positive integer n so that 0 < n < 21 and 5n = 1(mod 21).

Observe that 5(—4) = —20 = 1(mod 21). Now we use part (a) to conclude that since —4 =
17(mod 21), we have that 5(17) = 5(—4) = 1(mod 21). Thus n = 17 is the integer we seek.

c. Solve the congruence 15z = 6(mod 63).

Note here that ged(15,63) = 3 > 1. Since 3|6 as well, we can divide through by 3 to obtain the
congruence
5z = 2(mod 21).

In order to solve this, we need to find 5~%(mod 21). However, this is precisely what we found in
part (b), namely, 5! = 17(mod 21). Thus, the solution to the congruence 5z = 2(mod 21) is given
by = = 17(2) = 34 = 13(mod 21). To check this is a solution, note that 5(13) = 65 = 2(mod 21).
Therefore, it only remains to construct the other solutions modulo 63. This is accomplished by
adding multiples of 21: 13 +21(0) = 13,13 4+ 21(1) = 34,13 4+ 21(2) = 55. Thus, 13,34 and 55 are
the solutions of the original congruence.

5. (6 points) For any positive integer n, prove that n? = 0 or 1(mod 3).

Proof: We know that any positive integer is congruent to 0, 1, or 2 modulo 3. Therefore, we just
need to check what 0%, 12, and 22 are modulo 3:

0? 0 (mod 3)
12 = 1(mod3)
22 = 4=1(mod3).

6. (10 points) Show that 3" > n for all positive integers n.

Proof: We proceed by induction on n. We begin by checking the base case of n = 1: 31 =3 > 1.
Now suppose that 3% > k for some positive integer k. Observe that

= 3(3h)
3k by our induction hypothesis

k+k+k
> k+1 since k > 1 shows that k + k> 2 > 1.

V

Thus we see that 351 > k4 1, so by induction we see that the statement holds for all n € N. Il



7. (3+3+4 points) a. Complete the following sentence: “An integer p > 1 is prime if ”
An integer p > 1 is prime if and only if the only positive divisors of p are 1 and p.
b. Show that if d|a and d|b, then d|(am + bn) for all integers m,n € Z.

Proof: Using that d|la we see that there exists s € Z so that ds = a and similarly there exists
t € Z so that dt = b. Thus we see that

am+bn = dsm+ditn
= d(sm+tn).

Thus, d|(am + bn). B

c. Let a and b be integers with ged(a,b) = d > 1. Suppose there exists m,n € Z so that
p = am + bn for some prime number p. Prove that d = p.

Proof: Note that since d = ged(a, b), we have that d|a and d|b. Thus, it follows from part b that
d|(ma+mnb). In particular, we see that d|p. But since d > 1 and d|p, we must have that d = p. B

8. (3+7 points) Let f: X — Y and A,B C X.

a. Define f(A).

fA) = {f(a)]ac A}
= {y €Y | Ja € Asuch that f(a) = y}

b. Prove that if f is injective then f(A) N f(B) = f(AN B).

Proof: Let y € f(A)Nf(B),ie.,y € f(A) andy € f(B). Sincey € f(A) we know there exists an
a € A so that f(a) =y. Similarly, we have that there exists a b € B so that f(b) = y. This shows
that f(a) =y = f(b). The fact that f is injective implies that a = b. Thus, a € A and a € B,
i,e.,a € AN B and f(a) =y. Hence y € f(AN B). Thus we have that f(A) N f(B) C f(AN B).
Let y € f(AN B). So there exists x € AN B so that f(z) =y. Since x € AN B, z € A and
x € B. Thus we see that y € f(A) N f(B). Hence f(AN B) C f(A) N f(B) and thus we have
J(A)0 f(B) = (AN B). m

9. (8 points) Show that for a and b positive integers, ged(a,b) = ged(a, a + b).

Proof: Recall that if e|a and e|b, then necessarily we have that e| gcd(a,b). What we will show is
that ged(a, b)| ged(a, a+b) and ged(a, a+b)| ged(a, b) and so they are equal. Let d = ged(a, b) and
e = ged(a,a + b). First observe that since d|a and d|b, we have that d|a + b. Thus dle. Observe
also that e|a, so it only remains to show that e|b. Since e = ged(a,a + b) we have that ela and
el(a+b). So there exists m,n € Z so that em = a and en = a+b. Combining these two equations
we have en = em + b, i.e., b =e(n —m). Thus e|b and hence e|d and so d =e. B



10. (8 points) In set theory two sets A and B are considered to be “the same” if there is a
bijective function (injective and surjective) f : A — B. Let E be the set of even integers and O
be the set of odd integers. Show under this definition of two sets being the same that E is the
same as Q.

Proof: Recall that any even integer can be written in the form 2k and any odd integer can be
written in the form 2k + 1 for some integer k. Define the function f: E — O by f(2k) = 2k + 1.
This function clearly takes the set of even integers into the set of odd integers. Now we just need
to show the function is injective and surjective.

Let 2n and 2m be even integers so that f(2n) = f(2m), i.e., 2n+1 = 2m + 1. Subtracting 1 from
each side we have 2n = 2m. Thus f is injective.

Now let 2n+1 be an odd integer. Then 2n is an even integer and f(2n) = 2n+1, so f is surjective.
|

11. (10 points) A group of 7 young children decide to each go to a different neighborhood to
trick-or-treat for Halloween. Upon finishing, they gather and mix all of their candy in a large pile.
When they tried to divide the candy equally amongst themselves, there were 6 left over. This
caused two of the children to become impatient and leave to go home without any candy. After
the two left, the kids again tried to divide the candy equally amongst themselves and found there
were 2 pieces left over. What is the smallest number of pieces of candy that could have been in
the original pile? (You must use the methods of this course to find the solution, guess and check
will receive 0 points.)

This amounts to solving the simultaneous congruences

6(mod 7)
2(mod 5).

We apply the Chinese remainder theorem to find the smallest value of = that satisfies both
congruences. Since ged(5,7) = 1, we know there exist integers m,n € Z so that 1 = 5m+7n. The
solution z to the congruence is then given by = = 6(5m) + 2(7n). Thus, our next step is to find m
and n. One can use the Euclidean algorithm to find them, or just observe that 5(3) + 7(—2) = 1.
Thus, z = 6(15) + 2(—14) = 62(mod 35). Thus, 62 is a solution, but the smallest solution is
obtained when we reduce this modulo 35 to obtain « = 27. Note that one can check easily that
27 does indeed satisfy both congruences.



