MATH 580 — FINAL EXAM March 15, 2006

NAME: Solutions

- 1. Do not open this exam until you are told to begin.
- 2. This exam has 10 pages including this cover. There are 8 problems.
- 3. Do not separate the pages of the exam.
- 4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.
- 5. If you are unsure whether you can quote a result from class or the book, please ask.
- 6. Please turn off all cell phones.

1. (3 points each) (a) Let F be a field and $f(x) \in F[x]$. Define the splitting field of $f(x)$. See page 99.

(b) Let X, Y, and Z be sets with $Z \subset Y$ and $g: X \to Y$ a map. Define $f^{-1}(Z)$.

```
See page 376.
```
(c) Define what it means for $f(x) \in F[x]$ to be irreducible.

See page 87.

(d) Define the term field.

See page 39.

(e) Let a and b be integers. Define the greatest common divisor of a and b.

See page 13.

(f) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Define $a \equiv b \pmod{n}$.

See page 20.

2. (2 points each) Give examples of the following. These are no partial credit, so no explanation is necessary.

(a) An integral domain that is not a field.

The ring $\mathbb Z$ is an integral domain that is not a field. For example, $2^{-1} \notin \mathbb Z$.

(b) A field with finitely many elements.

The ring $\mathbb{Z}/5\mathbb{Z}$ is a field.

(c) A field with infinitely many elements.

The ring $\mathbb O$ is a field with infinitely many elements.

(d) An infinite ring that is NOT an integral domain.

The ring $(\mathbb{Z}/4\mathbb{Z})[x]$ is an infinite ring (x to any positive power is in this ring) and it is not an integral domain because $\overline{2}x \cdot \overline{2}x = \overline{0}$ but $\overline{2}x \neq \overline{0}$.

(e) An integral domain that is NOT a field but contains Q. (Think Chapter 3!)

The ring $\mathbb{Q}[x]$ is an integral domain that contains \mathbb{Q} , but it is not a field because for example x does not have an inverse.

(f) An injective function that is NOT surjective.

The map $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = 2n$ is an injective map but is not surjective.

(g) A surjective function that is NOT injective.

The map $f: \{1,2\} \rightarrow \{1\}$ defined by $f(1) = 1 = f(2)$ is a surjective function that is not injective.

3. (5 points) Let $z \in \mathbb{C}$. Recall that we denoted the real part of z by Re(z). Prove that

$$
\operatorname{Re}(z) = \frac{z + \overline{z}}{2}.
$$

Proof: Write $z = a + bi$ with $a, b \in \mathbb{R}$. Note that $Re(z) = a$. Then we have

$$
\frac{z+\overline{z}}{2} = \frac{a+bi+a-bi}{2}
$$

$$
= \frac{2a}{2}
$$

$$
= a.
$$

4. (5 points) Let R be an integral domain with $\mathbb{Z} \subset R$. Show that if $2^5x = 2^3y$, then $4x = y$.

Proof: Note that the statement $2^5x = 2^3y$ is equivalent to the statement that $2^5x - 2^3y = 0$. We can factor out a 2³ on the left hand side to obtain the equation $2^3(4x - y) = 0$. Since $2^3 \neq 0$ since $\mathbb{Z} \subset R$, we can use the fact that R is an integral domain to conclude that $4x-y=0$, i.e., $4x=y$.

5. (6 points each) There are 6 separate questions in this problem. Pick any three of them that you choose and ignore the other three. Please indicate CLEARLY which three you want graded, otherwise I will grade the first three.

(a) Prove or disprove: Let $a, b, c \in \mathbb{Z}$. If $a|(b+c)$ then $a|b$ or $a|c$.

This statement is false. Let $a = 6$, $b = 3 = c$. Then $6|(3+3)$ but $6 \nmid 3$.

(b) Let p be a prime number. Prove that if $p|(a_1a_2\cdots a_n)$, then $p|a_i$ for some $1 \leq i \leq n$. (You may use the fact that if $p|ab$ then $p|a$ or $p|b$.)

Proof: We prove the statement by inducition on n. The base case of $n = 2$ is true by the fact you are allowed to use, namely, if $p|ab$, then $p|a$ or $p|b$. Now suppose that for some positive integer k we know that if $p|(a_1 \cdots a_k)$, then $p|a_j$ for some $1 \leq j \leq k$. Suppose $p|(b_1 \cdots b_k b_{k+1})$ for some integers b_i $(1 \le i \le k+1)$. In particular, we see that $p|ab$ for $a = b_1$ and $b = b_2 \cdots b_{k+1}$. Thus, but the case of $n = 2$ we know that $p|b_1$ or $p|(b_2 \cdots b_{k+1})$. Applying the induction hypothesis to the case that $p|(b_2 \cdots b_{k+1})$ we see that $p|b_j$ for some $2 \leq j \leq k+1$. Combining this with the case that $p|b_1$, we have the result by induction.

(c) Let $f(x) \in \mathbb{Q}[x]$. Prove that if you divide $f(x)$ by $(x-2)$ then you obtain a remainder of $f(2)$. (This requires a proof, it is NOT acceptable to simply say "This is true by Proposition....")

Proof: Applying the division algorithm and dividing $f(x)$ by $(x - 2)$ we see that there exists unique $q(x)$ and $r(x)$ in $\mathbb{Q}[x]$ with $\deg(r(x)) < 1$ so that

$$
f(x) = (x - 2)q(x) + r(x).
$$

The fact that $\deg(r(x)) < 1$ implies that $\deg(r(x)) = 0$ and so $r(x)$ is a constant, say $r(x) = c \in \mathbb{Q}$. Rewriting the equation we have

$$
f(x) = (x - 2)q(x) + c.
$$

Plug in $x = 2$ to obtain $f(2) = c$.

(d) Prove that if
$$
f(x) \equiv g(x) \pmod{p(x)}
$$
 and $g(x) \equiv h(x) \pmod{p(x)}$, then $f(x) \equiv h(x) \pmod{p(x)}$.

Proof: The fact that $f(x) \equiv g(x) \pmod{p(x)}$ implies that there exists a polynomial $s(x)$ so that $p(x)s(x) = f(x) - g(x)$. Similarly, we have that there exists a polynomial $t(x)$ so that $p(x)t(x) = q(x) - h(x)$. Adding these two equations we obtain $p(x)(s(x) + t(x)) = f(x) - h(x)$, i.e., $p(x)|(f(x) - h(x))$. Thus, $f(x) \equiv h(x)(\text{mod } p(x))$. ■

(e) Prove that $\mathbb{Q}[\sqrt{-3}]$ is a field. You may use the fact that $\mathbb{Q}[\sqrt{-3}] \subset \mathbb{C}$ and \mathbb{C} is a field.

Proof: By the fact listed we need only to show that $\mathbb{Q}[\sqrt{-3}]$ is a subring of \mathbb{C} that is also a field. Let $a + b\sqrt{-3}$ and $c + d\sqrt{-3}$ be elements of $\mathbb{Q}[\sqrt{-3}]$. closed under addition: $(a + b\sqrt{-3}) + (c + d\sqrt{-3}) = (a + c) + (b + d)\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]$ since $a + c$ and $b + d$ are in \mathbb{Q} . closed under multiplication: $(a+b\sqrt{-3})(c+d\sqrt{-3}) = (ac-3bd)+(ad+bc)\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]$ since $ac - 3bd$ and $ad + bc$ are both in Q. additive identity: $0 = 0 + 0\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]$ since $0 \in \mathbb{Q}$. multiplicative identity: $1 = 1 + 0\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]$ since 0 and 1 are in \mathbb{Q} . additive identity: $-a - b\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]$ since $-a$ and $-b$ are in \mathbb{Q} . Thus we have that $\mathbb{Q}[\sqrt{-3}]$ is a subring of C. Let $a + b\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]$ be such that not both a and b are 0. Then

$$
\frac{1}{a+b\sqrt{-3}} = \frac{a-b\sqrt{-3}}{a^2 - 3b^2}
$$

$$
= \left(\frac{a}{a^2 - 3b^2}\right) + \left(\frac{-b}{a^2 - 3b^2}\right)\sqrt{-3} \in \mathbb{Q}[\sqrt{-3}]
$$

since $\frac{a}{2}$ $\frac{a}{a^2-3b^2}$ and $\frac{-b}{a^2-3b^2}$ are in ℚ. Thus we have that Q[$\sqrt{-3}$] is a field. ■.

(f) Suppose $f: X \to Y$, $g: Y \to Z$, and $h = g \circ f$. Prove that if h is surjective, then g is surjective.

Let $z \in Z$. Using that h is surjective, we have that there exists an $x \in X$ so that $h(x) = z$. The fact that h is a composition allows us to write $g(f(x)) = z$, i.e., $g(y) = z$ for $y = f(x)$. Thus g is surjective. \blacksquare

6. (3+7 points) (a) State the fundamental theorem of algebra.

Suppose $f(x) \in \mathbb{C}[x]$ is a polynomial of degree $n \geq 1$. Then $f(x)$ has a root in \mathbb{C} .

(b) Use induction and the fundamental theorem of algebra to prove that if $f(x) \in \mathbb{C}[x]$, then $f(x)$ can be factored into linear factors.

Proof: We proceed by induction on the degree of $f(x)$. Suppose $f(x)$ has degree 1. Then $f(x) = ax + b$ for some $a, b \in \mathbb{C}$ with $a \neq 0$. Thus is already a linear factor. Now suppose that for some $k \in \mathbb{N}$ we have that all polynomials of degree k in $\mathbb{C}[x]$ can be factored into linear factors. Let $f(x)$ be a polynomial of degree $k + 1$. Using the fundamental theorem of algebra we have that there is a root α of $f(x)$ in $\mathbb C$. Thus, $(x - \alpha)$ must be a factor of $f(x)$. So there exists a polynomial $g(x) \in \mathbb{C}[x]$ of degree k so that $f(x) = (x - \alpha)g(x)$. Now by our inductive hypothesis we can factor $g(x)$ into linear factors. In particular, $f(x)$ is then factored into linear factors. Thus, by induction, we have that all polynomials in $\mathbb{C}[x]$ of degree greater then or equal to 1 can be factored into linear factors in $\mathbb{C}[x]$.

- 7. (3 points each) Let $R = (\mathbb{Z}/11\mathbb{Z})[x]/(x^3 + 3)$.
- (a) Is R a field? Justify your answer!.

R is not a field. In fact, it is not an integral domain. The polynomial $x^3 + \overline{3}$ has $\overline{2}$ as a root as $(\overline{2})^3 + \overline{3} = \overline{11} = \overline{0}$. In particular, we have that $x^3 + \overline{3} = (x - \overline{2})(x^2 + \overline{2}x + \overline{4})$. Thus, we have the zero divisors $\overline{x-2}$ and $\overline{x^2+2x+4}$.

(b) Compute $\overline{5x^2 + 7x + 4} + \overline{10x^2 - 3x + 1}$.

$$
\overline{5x^2 + 7x + 4} + \overline{10x^2 - 3x + 1} = \overline{15x^2 + 4x + 5}
$$

=
$$
\overline{4x^2 + 4x + 5}.
$$

(c) Compute $(2x^2+3) \cdot (x^3+5x^2+6)$.

$$
(\overline{2x^2+3}) \cdot (\overline{x^3+5x^2+6}) = (\overline{2x^2+3}) \cdot (\overline{5x^2+3})
$$

= $\frac{80x+10x^2+9}{10x^2+3x+9}$.

(d) Find a polynomial $r(x)$ of degree less then or equal to 2 so that $\overline{g(x)} = \overline{r(x)}$ where $g(x) =$ $x^6 + 10x^3 + 5.$

$$
\begin{array}{rcl}\n\overline{g(x)} & = & \overline{(x^3)^2 + 10x^3 + 5} \\
& = & \overline{3^2 + 10(3) + 5} \\
& = & \overline{44} \\
& = & \overline{0}.\n\end{array}
$$

(e) How many elements are in the ring R?

All polynomials of the form $ax^2 + bx + c$ with $a, b, c \in \mathbb{Z}/11\mathbb{Z}$ are in this ring. Thus there are 11^3 elements in this ring.

8. $(3+4+8 \text{ points})$ (a) Write down the 6^{th} roots of unity.

Let $\omega = e^{\frac{2\pi i}{6}}$. Then the 6th roots of unity are given by $1, \omega, \omega^2, \omega^3, \omega^4, \omega^5$.

(**b**) List the roots of $f(x) = x^6 - 2$.

The roots are given by mutliplying $\sqrt[6]{2}$ by the 6th roots of unity, i.e., the roots are $\sqrt[6]{2}\omega^j$ for $0 \leq j \leq 5$.

(c) Find the splitting field of $f(x)$. Be sure to prove the field you find is the splitting field. It may help to write your 6th root of unity in the form $a + bi$ for appropriate $a, b \in \mathbb{R}$.

Note that we can write

$$
\omega = e^{\frac{\pi i}{3}} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i.
$$

This leads to the following claim. Let K be the splitting field of $f(x)$.

Claim: $K = \mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i].$

Proof: Note that since K is the splitting field, all the roots of $f(x)$ are necessarily in K. Thus $\sqrt[6]{2}$ ∈ K and ω ∈ K. Using that K is a field and $\mathbb{Q} \subset K$, we see that $\omega \in K$ implies that $\sqrt{3}i \in K$ as well. Thus we have $\mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i] \subset K$. Now we must show the reverse containment. The reverse containment is true provided that we can show $f(x)$ splits over $\mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$ since K is necessarily the smallest field that $f(x)$ splits over. Note that since $\sqrt{3}i \in \mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$, we can use that $\mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$ is a field to obtain that $\omega \in \mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$. This in turn implies that $\omega^j \in \mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$. for $0 \le j \le 5$. Since $\sqrt[6]{2} \in \mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$, we have that $\sqrt[6]{2\omega^j} \in \mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$ for $0 \le j \le 5$, i.e., $f(x)$ splits over $\mathbb{Q}[\sqrt[6]{2}, \sqrt{3}i]$. Thus we have the claim.