
MATH 580 — FINAL EXAM

March 15, 2006

NAME: Solutions

1. Do not open this exam until you are told to begin.

2. This exam has 10 pages including this cover. There are 8 problems.

3. Do not separate the pages of the exam.

4. Your proofs should be neat and legible. You may and should use the back of pages for scrap work.

5. If you are unsure whether you can quote a result from class or the book, please ask.

6. Please turn off all cell phones.

PROBLEM POINTS SCORE

1 18

2 14

3 5

4 5

5 18

6 10

7 15

8 15

TOTAL 100
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1. (3 points each) (a) Let F be a field and f(x) ∈ F [x]. Define the splitting field of f(x).

See page 99.

(b) Let X, Y , and Z be sets with Z ⊂ Y and g : X → Y a map. Define f−1(Z).

See page 376.

(c) Define what it means for f(x) ∈ F [x] to be irreducible.

See page 87.

(d) Define the term field.

See page 39.

(e) Let a and b be integers. Define the greatest common divisor of a and b.

See page 13.

(f) Let a, b ∈ Z and n ∈ N. Define a ≡ b(modn).

See page 20.
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2. (2 points each) Give examples of the following. These are no partial credit, so no explanation
is necessary.

(a) An integral domain that is not a field.

The ring Z is an integral domain that is not a field. For example, 2−1 /∈ Z.

(b) A field with finitely many elements.

The ring Z/5Z is a field.

(c) A field with infinitely many elements.

The ring Q is a field with infinitely many elements.

(d) An infinite ring that is NOT an integral domain.

The ring (Z/4Z) [x] is an infinite ring (x to any positive power is in this ring) and it is not an
integral domain because 2x · 2x = 0 but 2x 6= 0.

(e) An integral domain that is NOT a field but contains Q. (Think Chapter 3!)

The ring Q[x] is an integral domain that contains Q, but it is not a field because for example x
does not have an inverse.

(f) An injective function that is NOT surjective.

The map f : Z → Z defined by f(n) = 2n is an injective map but is not surjective.

(g) A surjective function that is NOT injective.

The map f : {1, 2} → {1} defined by f(1) = 1 = f(2) is a surjective function that is not injective.

3. (5 points) Let z ∈ C. Recall that we denoted the real part of z by Re(z). Prove that

Re(z) =
z + z

2
.

Proof: Write z = a + bi with a, b ∈ R. Note that Re(z) = a. Then we have

z + z

2
=

a + bi + a − bi

2

=
2a

2
= a. �
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4. (5 points) Let R be an integral domain with Z ⊂ R. Show that if 25x = 23y, then 4x = y.

Proof: Note that the statement 25x = 23y is equivalent to the statement that 25x− 23y = 0. We
can factor out a 23 on the left hand side to obtain the equation 23(4x−y) = 0. Since 23 6= 0 since
Z ⊂ R, we can use the fact that R is an integral domain to conclude that 4x−y = 0, i.e., 4x = y. �

5. (6 points each) There are 6 separate questions in this problem. Pick any three of them that
you choose and ignore the other three. Please indicate CLEARLY which three you want graded,
otherwise I will grade the first three.

(a) Prove or disprove: Let a, b, c ∈ Z. If a|(b + c) then a|b or a|c.

This statement is false. Let a = 6, b = 3 = c. Then 6|(3 + 3) but 6 - 3.

(b) Let p be a prime number. Prove that if p|(a1a2 · · · an), then p|ai for some 1 ≤ i ≤ n. (You
may use the fact that if p|ab then p|a or p|b.)

Proof: We prove the statement by inducition on n. The base case of n = 2 is true by the fact you
are allowed to use, namely, if p|ab, then p|a or p|b. Now suppose that for some positive integer
k we know that if p|(a1 · · · ak), then p|aj for some 1 ≤ j ≤ k. Suppose p|(b1 · · · bkbk+1) for some
integers bi (1 ≤ i ≤ k + 1). In particular, we see that p|ab for a = b1 and b = b2 · · · bk+1. Thus,
but the case of n = 2 we know that p|b1 or p|(b2 · · · bk+1). Applying the induction hypothesis to
the case that p|(b2 · · · bk+1) we see that p|bj for some 2 ≤ j ≤ k +1. Combining this with the case
that p|b1, we have the result by induction. �

(c) Let f(x) ∈ Q[x]. Prove that if you divide f(x) by (x − 2) then you obtain a remainder of
f(2). (This requires a proof, it is NOT acceptable to simply say“This is true by Proposition....”)

Proof: Applying the division algorithm and dividing f(x) by (x − 2) we see that there exists
unique q(x) and r(x) in Q[x] with deg(r(x)) < 1 so that

f(x) = (x − 2)q(x) + r(x).

The fact that deg(r(x)) < 1 implies that deg(r(x)) = 0 and so r(x) is a constant, say r(x) = c ∈ Q.
Rewriting the equation we have

f(x) = (x − 2)q(x) + c.

Plug in x = 2 to obtain f(2) = c. �

(d) Prove that if f(x) ≡ g(x)(mod p(x)) and g(x) ≡ h(x)(mod p(x)), then f(x) ≡ h(x)(mod p(x)).

Proof: The fact that f(x) ≡ g(x)(mod p(x) implies that there exists a polynomial s(x) so
that p(x)s(x) = f(x) − g(x). Similarly, we have that there exists a polynomial t(x) so that
p(x)t(x) = g(x) − h(x). Adding these two equations we obtain p(x)(s(x) + t(x)) = f(x) − h(x),
i.e., p(x)|(f(x) − h(x)). Thus, f(x) ≡ h(x)(mod p(x)). �
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(e) Prove that Q[
√
−3] is a field. You may use the fact that Q[

√
−3] ⊂ C and C is a field.

Proof: By the fact listed we need only to show that Q[
√
−3] is a subring of C that is also a field.

Let a + b
√
−3 and c + d

√
−3 be elements of Q[

√
−3].

closed under addition: (a + b
√
−3) + (c + d

√
−3) = (a + c) + (b + d)

√
−3 ∈ Q[

√
−3] since a + c

and b + d are in Q.
closed under multiplication: (a + b

√
−3)(c + d

√
−3) = (ac− 3bd) + (ad + bc)

√
−3 ∈ Q[

√
−3] since

ac − 3bd and ad + bc are both in Q.
additive identity: 0 = 0 + 0

√
−3 ∈ Q[

√
−3] since 0 ∈ Q.

multiplicative identity: 1 = 1 + 0
√
−3 ∈ Q[

√
−3] since 0 and 1 are in Q.

additive identity: −a − b
√
−3 ∈ Q[

√
−3] since −a and −b are in Q.

Thus we have that Q[
√
−3] is a subring of C. Let a + b

√
−3 ∈ Q[

√
−3] be such that not both a

and b are 0. Then

1

a + b
√
−3

=
a − b

√
−3

a2 − 3b2

=

(

a

a2 − 3b2

)

+

( −b

a2 − 3b2

)√
−3 ∈ Q[

√
−3]

since
a

a2 − 3b2
and

−b

a2 − 3b2
are in Q. Thus we have that Q[

√
−3] is a field. �.

(f) Suppose f : X → Y , g : Y → Z, and h = g◦f . Prove that if h is surjective, then g is surjective.

Let z ∈ Z. Using that h is surjective, we have that there exists an x ∈ X so that h(x) = z. The
fact that h is a composition allows us to write g(f(x)) = z, i.e., g(y) = z for y = f(x). Thus g is
surjective. �

6. (3+7 points) (a) State the fundamental theorem of algebra.

Suppose f(x) ∈ C[x] is a polynomial of degree n ≥ 1. Then f(x) has a root in C.

(b) Use induction and the fundamental theorem of algebra to prove that if f(x) ∈ C[x], then
f(x) can be factored into linear factors.

Proof: We proceed by induction on the degree of f(x). Suppose f(x) has degree 1. Then
f(x) = ax+ b for some a, b ∈ C with a 6= 0. Thus is already a linear factor. Now suppose that for
some k ∈ N we have that all polynomials of degree k in C[x] can be factored into linear factors.
Let f(x) be a polynomial of degree k + 1. Using the fundamental theorem of algebra we have
that there is a root α of f(x) in C. Thus, (x − α) must be a factor of f(x). So there exists a
polynomial g(x) ∈ C[x] of degree k so that f(x) = (x− α)g(x). Now by our inductive hypothesis
we can factor g(x) into linear factors. In particular, f(x) is then factored into linear factors.
Thus, by induction, we have that all polynomials in C[x] of degree greater then or equal to 1 can
be factored into linear factors in C[x]. �
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7. (3 points each) Let R = (Z/11Z) [x]/(x3 + 3).

(a) Is R a field? Justify your answer!.

R is not a field. In fact, it is not an integral domain. The polynomial x3 + 3 has 2 as a root as
(2)3 + 3 = 11 = 0. In particular, we have that x3 + 3 = (x − 2)(x2 + 2x + 4). Thus, we have the
zero divisors x − 2 and x2 + 2x + 4.

(b) Compute 5x2 + 7x + 4 + 10x2 − 3x + 1.

5x2 + 7x + 4 + 10x2 − 3x + 1 = 15x2 + 4x + 5

= 4x2 + 4x + 5.

(c) Compute (2x2 + 3) · (x3 + 5x2 + 6).

(2x2 + 3) · (x3 + 5x2 + 6) = (2x2 + 3) · (5x2 + 3)

= 80x + 10x2 + 9

= 10x2 + 3x + 9.

(d) Find a polynomial r(x) of degree less then or equal to 2 so that g(x) = r(x) where g(x) =
x6 + 10x3 + 5.

g(x) = (x3)2 + 10x3 + 5

= 32 + 10(3) + 5

= 44

= 0.

(e) How many elements are in the ring R?

All polynomials of the form ax2 + bx + c with a, b, c ∈ Z/11Z are in this ring. Thus there are 113

elements in this ring.
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8. (3+4+8 points) (a) Write down the 6th roots of unity.

Let ω = e
2πi

6 . Then the 6th roots of unity are given by 1, ω, ω2, ω3, ω4, ω5.

(b) List the roots of f(x) = x6 − 2.

The roots are given by mutliplying 6
√

2 by the 6th roots of unity, i.e., the roots are 6
√

2ωj for
0 ≤ j ≤ 5.

(c) Find the splitting field of f(x). Be sure to prove the field you find is the splitting field. It
may help to write your 6th root of unity in the form a + bi for appropriate a, b ∈ R.

Note that we can write

ω = e
πi

3 = cos
π

3
+ i sin

π

3
=

1

2
+

√
3

2
i.

This leads to the following claim. Let K be the splitting field of f(x).

Claim: K = Q[ 6
√

2,
√

3i].

Proof: Note that since K is the splitting field, all the roots of f(x) are necessarily in K. Thus
6
√

2 ∈ K and ω ∈ K. Using that K is a field and Q ⊂ K, we see that ω ∈ K implies that
√

3i ∈ K
as well. Thus we have Q[ 6

√
2,
√

3i] ⊂ K. Now we must show the reverse containment. The reverse
containment is true provided that we can show f(x) splits over Q[ 6

√
2,
√

3i] since K is necessarily
the smallest field that f(x) splits over. Note that since

√
3i ∈ Q[ 6

√
2,
√

3i], we can use that
Q[ 6

√
2,
√

3i] is a field to obtain that ω ∈ Q[ 6
√

2,
√

3i]. This in turn implies that ωj ∈ Q[ 6
√

2,
√

3i]
for 0 ≤ j ≤ 5. Since 6

√
2 ∈ Q[ 6

√
2,
√

3i], we have that 6
√

2ωj ∈ Q[ 6
√

2,
√

3i] for 0 ≤ j ≤ 5, i.e., f(x)
splits over Q[ 6

√
2,
√

3i]. Thus we have the claim. �.


