WARING’S PROBLEM AND RESULTS

ABSTRACT. Waring’s problem although simple took over a cen-
tury to prove in general. The problem’s history and definition is
presented along with a two proofs. First, that any integer is a sum
of at most four squares. Second, an elementary proof which proves
Waring’s problem for all cases.

1. INTRODUCTION

Edward Waring is best known for a problem concerning sums of pos-
itive integers raised to positive k& powers. He was a Lucasian chair of
mathematics at Cambridge, a Fellow of the Royal Society, and received
the Royal Society Copley Medal for achievements in mathematics. Sur-
prisingly he presented his conjecture, aptly called Waring’s problem,
without proof.

In 1770, Waring stated that any positive integer can be written as
the sum of no more than a fixed m of positive kth integer powers [1].
He states that every positive integer is the sum of four squares, nine
cubes, nineteen powers of four and so on. For convenience we denote
m by

g(k) =m

Later that same year Lagrange proved that Waring’s conjecture when
k=2 was true, that is every positive integer is the sum of at most four
squares.

Two years later Euler gives a lower bound for g(k) calculated by
3\ ..
(1) l(i) J 28 -2

Throughout the 19th century work from J. Liouville 3], E. Lucas
[4], and many others contributed to determining m for k=3, 4, 5, and
6. It was not until 1909 when a proof regarding the existence of such

an m for any positive integer k was presented by D. Hilbert [5]. His
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proof relied on complicated analysis and multiple integrals.

A few years later G.H. Hardy and J.E. Littlewood [6]

“... made use of the theory of analytic functions to prove
that every positive integer, which exceeds a certain num-
ber depending on k alone, is a sum of at most k%! 1
positve kth powers; for example, a sum of at most 33
biquadrates. The transcendental method leads not only
to a proof of the existence of representations, but also
to asymptotic formulas for their number.” [10]
Using this method, it has has been shown that (1) is in fact g(k) for
6 < k < 471600000 [7]. Thus Euler’s equation is generally believed to
be the exact value of g(k).

2. PROOF THAT EVERY POSITIVE INTEGER IS THE SUM OF AT
MOST FOUR SQUARES

When k=1, g(k) = 1 since for n € N we have
n! =n.
Therefore we are concerned with the more interesting

cases where k > 2.

The simplest such case is when k = 2. Lagrange proved that every
positive integer is the sum of at most four squares i.e. g(2) = 4 in the
same year Waring publicized his conjecture.

To see that this is true, first note that

1=1%+0%+0%+0%

Let 1, z3, 73,74 € Z and y1,%2,¥s, Ya € Z. Then the product

is itself a product of four squares where a = z,y; + Z232 + Tays + ZTavs,
b = Tyys — Toy + Tays — TaYs, € = T1Y3 — Tay) + Taye — Za¥s, and
d = Z1ys — T + Tays — T3l

So it is equivalent to show that for any prime p, p is the sum of at
most four squares.

When p =2, 2= 1% + 12 4+ 0% + 02. Thus assume p > 2.
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We will also require the following ( proof left to reader )

Theorem 2.1. If p i3 an odd prime, then there are numbers z and y
such that
1422+’ =mp (0<m<p).

Thus there is some m € Z such that

2 2
z: + 73 + 73 + T3 = mp,

where z;, 2, Z3, Z4 are all relatively prime to p.
We now wish to show that p is the least such multiple.

Let mqp be the least such multiple. If my = 1 our proof is complete.
Assume mp > 1. From above, 0 < my < p.
Suppose my is even.

Then the sum of z!s is even. Thus the z!s are:
(i) all even

(ii) all odd

(iii) two are even and two are odd

Suppose without loss of generality that for (iii), z,,z2 are even and
3,4 are odd. Then
1+ %2, %1 — T2, T3 + T4, T3 — X4

are all even for each case i, ii, and iii.

So

1 _ T+ T4 Ty — T2,y T3 + Tq. T3 — Tq,9
is the sum of four integer squares. No square is divisible by p since
each z; is not divisible by p. This contradicts our definition of mg.

Thus my must be odd.

Each of z,, z2, z3, 24 are not divisible by m,.
Otherwise m3 | mop and that implies my | p.
Furthermore my is odd and mg > 1, mg = 3.

Now we wish to choose some b, bs, bs, by such that

vi=zi—bmp (1=1,2,3,4)
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satisfies the inequalities

1
l:l < 5, v+ +ul>o.

Then
1
O<yl+y+yi+yi< 4(§mo)2,
and
Vi+y;+i+ i =0 (modmy).
So

i+ xitali=mep (mo <p),

v+ ys + 93 +yi=mom; (0 <my <my).

From equation (2) let

21 = (a1 + Tay2 + 23ys + 11?43!4)2
22 = (Z1y2 — T2y + T3ys — Tays)?
23 = (T1y3 — T3y1 + Tay2 — x2y4)2

z4 = (Z1Ya — Tath + Tays — fvsyz)z-

Then
®3) mymip =2 + 2 + 23 + 24
But
2= Zx,-y,- = Z:c,-(:v,- — bimy) = Zx? = 0 mod mp
Similarly, 23, 23, 24 are divisible by mg. So we may write

Z = Tnoj{ (2 = 1,2, 3, 4).

Thus (3) becomes
mip = ji + 73 + 33 + 73.
But this contradicts the definition of mp because m; < my.

Therefore mp = 1 and we conclude that p is the sum of at most four
integers squared.
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3. AN GENERAL PROOF FOR WARING’S PROBLEM

The purpose of the proof given here is to prove the existence of m
such that g(k) = m for any & € N. It comes from a 20th century
mathematician named Y.V. Linnik. This elementary proof relies on L.
G. Schnirelmann’s theorem

Theorem 3.1. Every sequence of positive density is a basis of the
sequence of natural numbers.

Recall that a sequence S is a basis of order k if the sum of k identical”
sequences S contains all the natural numbers.

The concept of density is not as simple.

Let S be the sequence 0,81, 83,.-.,8,,... wherei=1,2,3,...,8; € N
and s; < 8i31. Let S(n) indicate the number of natural numbers in §
that do not exceed n so that 0 < S(n) < n.

Then upon multiplication by 1 we have the inequality

)

0< 2 ¢
n
which is different for each n. 8]

For example let S’ = 0,2,3,5,7,11,... i.e. §'is a sequence of the
prime numbers. Then §'(13) = 5 and
5
13
Consider s_"(‘g for all n. The greatest lower bound of that set of
numbers is the density of the sequence S’

0o <L

More formally,

Definition 3.2. The density of the sequence S, denoted by d(S3), is
the greatest lower bound of all values of £(2),

The Schnirelmann theorem states that if d(S) > 0 then the sum of
a sufficiently large number of sequences S contains the entire sequence
of natural numbers. Thus to show (1) for any k € N we may show that
the sequence s%, sk, ..., s*, has density greater than 0.

Before stating the proof we state the following lemma
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Lemma 3.3. There exists a natural number k = k(n), depending only
on n, and a constant c, such that, for an arbitrary N € N,

(4) rm <Ni-1 (1<m<N).

Now, by definition of ri(m) from the lemma, the sum

(5) Tk(O) + 7‘);(1) +--o41(N) = Ry(N)

gives the number of systems (z7 -+ 23 + ... + z} > N. Every group of
numbers for which 0 > z; > (X)!/*(1 > i > k), obviously satisfies this
condition. To satisfy these inequalities, every z; can evidently be cho-
sen in more than (N/k)V/" different ways (z: = 0,1,..., | (N/k)'/")).
After an arbitrary choice of this sort, the numbers z,,z, ...,z may
be combined, and so we have more than (N/k)*/ different possibilities
for choosing the complete system of integers z; (1 > i > k) so as to
satisfy condition (3). This shows that

(6) Ry(N) > (N/R)".

We assume that the fundamental lemma has been shown to be correct,
and that inequality (2) is satisfied for an arbitrary N. We now have
to verify that inequality (2) is consistent with inequality {4) which we
proved, only if the sequence As.k) has a positive density.

So now assume that d(A,)* = 0. For an arbitrarily small & > 0 and
a suitably chosen N,

AX(N) < axN.

From the following theorem we may assume that N is arbitrarily large
since 1 € Ak,

Theorem 3.4. Ifd(S) = 0 and S contains the number 1, and if @ < 0
is arbitrary, then there exists a sufficiently large t such that S(t) < a=t.

We apply the inequality (2) to get
Ru(N) =Y " ri(m)
=7x(0) + ) _ri(m)
<14 cN¥" - 1AK(N)
<1+ cax N,
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Thus for sufficiently large N,
Ri(N) < 2ca = N*™,

()"

2c0 < =,
n

For sufficiently small o,

so that N
Ry(N) < ()M

This contradicts (4) hence d(A¥) > 0. [9)
Therefore by the Schnirelmann theorem we have shown that g(k) = m
formeNand k €.

This paper discussed a small fraction of a very deep problem. For

example, recall that Euler suggested that [(3)*] + 2 — 2 is a lower
bound for g(k). To date Waring’s problem epitomizes the nature of
many problems of number theory. That is, they are simple to describe,
accessible to puzzlers and mathematicians, but have vast implications
that often take many years to fully describe.
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