RSA CRYPTOGRAPHY, THE SOLUTION TO THE
PUBLIC-KEY PROBLEM

ABSTRACT. This paper briefly discusses the public-key problem
before delving into the RSA cryptography algorithm. We see secu-
rity of the system demonstrated and discuss a few possible attacks
on the system along with the corresponding defenses.

1. THE PUBLIC-KEY PROBLEM

The dawn of the computing age has brought in a myriad of mathe-
matical problems and opportunities. Many of these modern problems
can be solved using one of the oldest branches of mathematics: number
theory. One of the most intriguing of these is the issue of public-key
cryptography.

Obviously any network of computers, most recently and expansively
the Internet, provides a massive channel for the exchange of ideas and
information. But what if one wants to exchange a message in secret? In
more primitive times, any coded message would have to be encrypted
using a symmetric key, that is, an cncryption system that would be
shared by the message sender and receiver and kept secret from all
others. But this presented many problems: the code had to be ex-
changed through a secure network, the code could be stolen and all
messages would be completely compromised until an entirely new sym-
metric code could be formulated and exchanged, and so on. If there
were a way to encrypt messages through a code visible to all, but only
able to be decrypted by the intended receiver, a sort of public key
cryptography system, then secure messages could easily be sent over
insecure methods.

The public-key cryptography problem was shaken by the introduc-
tion of the Diffie-Hellman method [3) in 1976 in the paper "New Di-
rections in Cryptography,” which introduced the idea of using modular
arithmetic calculations to provide a secure message transfer system over
an insecure network. The following year, at the Massachusetts Insti-
tute of Technology, the public-key cryptography problem was solved by

1

2 S

three professors: computer science professor Ronald Rivest and math-
ematics professors Adi Shamir and Leonard Adleman. The cryptog-
raphy algorithin is named after the first initials of their last names.
RSA.

(Note: a system very similar to RSA was developed independently in
secret by Clifford Cocks at Government Communications Headquarters
in Cheltenham, England, in 1973, but it was not released until well after
RSA had been published and implemented.) [1]

2. How RSA WORKS

The RSA algorithm follows a few simple arithmetic and modular
arithmetic calculations. First, select two primes, and call them p and
q. Then perform the following calculations:

n=pq

®(n) = ¢(p) + ®(q) =(p—1){g - 1)

Next choose an integer e such that 1 < e < ®(n) and ged(e, ®(n)) =
1. Since e and ®(n) are relatively prime, then there exist k, d € Z such
that

(1) de + k®(n) =1

by Euclid’s Lemma. Find d by the division algorithm.

We now have our public key e, our private key d, and our modulus
n, which is also made public, by which all further modular arithmetic
calculations will be made.

To encode a message, Person A looks up Person B’s e and n. Then
A takes his message m and raises it to B’s e power, modulo B’s n.

(2) m® = c(modn)

The resulting number c is then sent to B. To decode the message, B
takes the received message ¢ and raises it to the power of his private
key d modulo n.

¢? = (m?)? = m* = m(modn)

The result is the original message m.
The validity of this algorithm is based on the following theorem:

Theorem 2.1. Let n be the product of 2 primes, let e be relatively
prime to ®(n), and let d exist such that de = 1(mod ®(n)). Then for
all b € Z, b* = b(modn).

RSA CRYPTOGRAPHY, THE SOLUTION TO THE PUBLIC-KEY PROBLEM 3

Proof [1]: Since de = 1(mod(p — 1)(g — 1)), we know that
de = 1(mod(p — 1))
de = 1{mod(q — 1))
By Fermat’s Little Theorem, we get
b% = b'(mod p)
b’ = b'(mod q)
Since p | (6% — b) and q | (b® — b), it follows that .

lem(p,q) = pg | (b% - b)

Therefore, b = b(mod n), as desired.

So, anyone can encrypt a message to send to A, but once encrypted,
the message cannot be decrypted by anyone other than A, not even the
sender of the message.

3. DIGITAL SIGNATURES

The problem with such a public-key system is that anyone can create
a message to send to B using B’s encryption data. How can B be sure
from whom the message is? Fortunately, RSA solves that problem as
well, by the use of digital signatures.

A raises his signature s to the power of his private d modulo his n.

s! = t(modn)

Then A sends the resulting ¢t to B along with the message encrypted
using B’s e and n. Then all B has to do is raise ¢ to the power of
A’s public e to retrieve the original signature. Note that this is not
a secure signature. Anyone who intercepts the message can verify A’s
signature. But the message itself is still safe.

The problem lies in the security of the signature. Not only can any
outside interceptor determine that A sent the message, but the inter-
ceptor can also send messages to B claiming to be A, and vice versa.
So A can equip what is called a "hash function,” which is generally
agreed to be a function Hash with the following properties:

1: Given any h, it should be very difficult to find an m such that

Hash(m) = h.

2: Given any 7, it should be very difficult to find an n # m such

that Hash(m) = Hash(n).

3: Given any Hash(m), it should be very difficult to find an n # m

such that Hash(m) = Hash(n).

This hash function is then applied to A’s signature and to a part of
the encrypted message that A sends to B. Then, when B decodes the

4 L

message, the two hash values will match if and only if the sender has
A’s private key.

4. How SECURE IS IT?

We have seen that the RSA algorithm is an effective way to transfer
information. But what security risks exist? Just how secure is the
system? If an outsider, Person X, wants to decode the message ¢ from
equation 2, without knowing B’s private decryption key, he has sev-
eral options. First, he can attempt to calculate ¢ ¢(modn) directly.
However, no reliable method for this exists. So, X must use a more
roundabout way to find the message m. He knows that de + k®(n) =1
by equation 1. e is public knowledge, so if X can determine what ®(n)
is, he can deduce d from the division algorithm. Determining ®(n)
requires factoring n into its two prime factors. This presents a prob-
lem. The primes p and ¢ chosen may be over 300 digits long (1024
bits). Even if one possible combination of primes could be run every
nanosecond (10~? second), it would still take well over 10%° years to
run them all. The problem of factoring large numbers continues to be
of interest; in fact, in 1991 RSA Laboratories put forth a challenge to
factor several large RSA numbers (that is, numbers that are the prod-
uct of two primes) with cash awards for the first to factor each number.
[1] Several were factored, the largest of which was 200 decimal digits
long, but many remain unfactored. Most factored RSA numbers took
years to break down.

So it may appear that we are out of the woods. Any interceptor
cannot decipher the message without knowing d, nor can he determine
what d is by mathematical force. However, unfortunately, slightly more
cunning techniques of cracking the system do exist. One of the more
interesting approaches is called a timing attack. (1] Person X deter-
mines the hardware capabilitics of B’s machine and records decryption
times for several messages. Irom this, X can quickly narrow down a
range for d and find the value for d relatively quickly.

To safeguard against a timing attack, B can take the message ¢
from A and multiply it by a secret random number r and computes
r°c(modn). B then decodes using the secret exponent d to obtain

ed,_ed —

(r°c)® = r*m r*m(mod n)

B then simply multiplies by the inverse of r to obtain the message m.
As long as r is randomly generated every time a new message is de-
crypted, the timing will be thrown off enough that X cannot determine
d reliably.

RSA CRYPTOGRAPHY, THE SOLUTION TO THE PUBLIC-KEY PROBLEM §

Another problem is the threat of a "man-in-the-middle” attack, in
which Person X presents their own encryption keys, masquerading as
Person B, to Person A, in an attempt to get Person A to send a message
intended for Person B across the network, in prime position for X to
decode it. This problem can be averted by attaching a digital certificate
to a public key, assigned by a trusted third party.

5. OTHER PROBLEMS OF RSA

RSA cryptography depends on the use of modular arithmetic to en-
sure security. If the calculations were not taken modulo our n, it would
be an easy task to take the e root of our encrypted message to deter-
mine the content of the message. But what if, by some unlucky flaw,
we code the message in such a way that raising certain parts of a mes-
sage to the et* power gave us a c less than our n? Our interceptor X
could simply take the e* root of this ¢ without regard to our modulus
n. Also, no matter what e and n are, inputs of 0 and 1 give outputs of
0 and 1, respectively. What can be done to ensure absolute security of
these small values?

Ingeniously, cryptographers can make use of what is known as a
”padding scheme.” In a padding scheme, parts of our 7 are run through
a function that amplifies their values to a point that, while cach part
remains less than n, by necessity that all distinct inputs remain distinct
modulo n, cach output of our padding scheme is sufficiently large to
end up larger than n when raised to the e** power. [1]

In addition to making n very difficult to factor, working with such
large primes raises other issues. How can such a large calculation as
raising a 300+ digit number to a power in the hundreds or thousands?
Computers are able to do these without doing hundreds of large cal-
culations by a method called exponentiation by squaring. Here’s an
example: [4]

Say we want to calculate 29%7. Note that 47 is equal to 101111 in
binary. So

A7 =1%24+0+2" +1+22 4+ 1222 412" 4+142°
From this, we can break up 297 as follows:
2047 = 2925+23+2’+2'+2°
= 20%° 20%° x 20%° x 297" 4 20%
— 292:2:2::2:2 % 292::2:2 % 292:2 * 292 *29
= ((((29%)%)%)%) * ((20%)%) * (29)® » 297 % 29

6 N

At first glance this looks no simpler. But notice that now we must
only do 15 calculations, instead of the 46 required to multiply out
20%20%20* *29. Also, we are greatly assisted by the fact that after
each calculation, we can perform a modular reduction to get smaller
numbers to work with. By this method, large exponential calculations
can be done extremely quickly.

6. CONCLUSION

So, we see that a relatively simple mathematical solution, applied
through modular arithmetic, has solved one of history’s most intriguing
problems, at least for the moment. New forms of aggressive decrypting
are being developed every day, and those who seek to protect the secu-
rity of the system must work tirelessly to this end. But, amazingly, in
this dynamic fast-paced world, one technique has stood the test of 30
years of attacks and remains seemingly uncrackable in the foreseeable
future. RSA has transformed the way we work and secure our data.
One can only imagine what else future mathematicians can find to use
it for, and what other fantastic solutions will arise to cryptographical
problems.

REFERENCES

(1] "RSA.” Wikipedia: The Free Encyclopedia. 28 May 2007. 28 May 2007.
<http:/ /en.wikipedia.org/wiki/RSA>

[2] "Cryptogenic hash function.” Wikipedia: The Free Encyclopedia. 22 May
2007. 28 May 2007. <http://en.wikipedia.org/wiki/>

[3] Robinson, Sara. "Stil Guarding Secrets after Years of At
tacks, RSA Earns Accolades for its Founders.” SIAM
News Volume 36, Number 5, June 2003. 28 May 2007.
<http:/ /www.msri.org/people/members/sara/articles/rsa.pdf>

[4] "Prime Number Hide-and-Seek: How the RSA Cipher Works.” Muppetlabs.
28 May 2007. <http://www.muppetlabs.com/ breadbox/txt/rsa.html>

(5] "RSA Algorithm.” DI Management. 2 Oct. 2006. 28 May 2007.
<http://www.di-mgt.com.au/>

THE OH10 STATE UNIVERSITY

E-mail address: SNN—D

