INTEGER PARTITIONS

ABsTRACT. This paper consists of a basic overview of partition
theory. It begins with the definition of a partition, a discussion
of the partition function, p(n), the intermediate function, p(k, n),
and generating functions for p(n). Also covered are Ferrers graphs,
Ramanujan congruences, rank and crank.

1. INTRODUCTION

Where primality deals with breaking whole numbers into products,
partition theory deals with how integers can be broken down into a
sums. Much of what is known about partition theory began Euler
and grew with the collaboration of Srinivasa Ramanujan, the Indian
mathematical prodigy, and G. H. Hardy at Cambridge [1].

Definition 1.1. A partition of a positive integer n is defined to be
a sequence of positive integers whose sum is n [1). The order of the
summands is unimportant when writing the partitions of n, but for
consistency, partitions of n will be written with the summands in a
non-increasing order. For example, the partitions of n = 4 are given
as:
4=4

=3+1

=2+2

=2+1+1

=14+1+4+1+1
Another way to define a partition of a positive number n is as a solution
of the diophantine equation [2]:

l*xx,+2*%xx5+3*x23+...+n*xx, =n

where the partitions of n include the sums corresponding to the solu-
tions.

Definition 1.2. A summand in a partition is called part. In the par-
tition 341, we have that 3 and 1 are parts comprising the partition.
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Definition 1.3. The partition function p(n) counts the number of
unique partitions of the positive integer n. Recall that there were 5
unique partitions of 4. Thus, p(4) = 5. The value of p(n) is shown
below for 0 < n < 10:

p(0) =1
p(l)=1
p(2) =2
p(3)=3
p(4)=5
p(5) =7
p(6) =11
p(7) =15
p(8) = 22
p(9) =30
p(10) = 42

Definition 1.4. The intermediate function is given as p(k,n). The
intermediate function is defined such that it counts the partitions of
n with the largest added being no smaller than k [4]. Some values of
p(k,n) are given below [4]:

p(1,4) =5
p(2,8)=7
p(3,12) =9
p(4,16) = 11
p(5,20) =13
p(6,24) = 16

2. How MANY WAYS CAN n BE PARTITIONED?

We know that p(n) counts the number of ways n can be partitioned,
but how can we calculate p(n)? There is a clear brute force algorithm
that can determine the number of partitions for n simply by listing the
number of partitions and then counting them as we did in the definition
of a partition, but p(n) grows quite quickly. While p(n) starts small, the
number of partitions of 100, a relatively small number, is 190,569,292.
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It’s easy to see that listing partitions and counting is not going to
be an effective method for determining p(n). A numerical formula or
generating function, is much more useful for calculating large values of
p(n).

One such formula for p(n) was given by Hardy and Ramanujan and
then independently by J. V. Uspensky:

ect\/ﬁ

pln) ~ 4xnx/3
where ¢ is given as:
c=mx*(2/3)/2

This is, however, just an approximation to p(n). While very near the
actual value of p(n), it still does not provide us with the exact value
we desire [1].

Hans Rademacher provided another way to determine p(n), though
[5). It is given by a series called the Rademacher’s series that comes
from the reciprocal of Euler’s function:

> stoe = 1 (27)

n=0 k=1
which can be expanded to

Q+z+z+z3+ . )JA+ze+za+ze+ .. )1+ 23 +26+To+...)...

The z, term gives us the number of partitions of n (4] [5]. This,
however, is not a formula for p(n), but rather a generating function
which allows p(n) to be calculated exactly for any n [4).

It is also interesting to note that the terms of Rademacher’s series
can be truncated to provide approximations of p(n). By taking just
the first term in the series for n = 200, the result approximates p(n)
with an error of 0.004 [1). This is quite helpful when only the order of
magnitude of p(n) is required.

3. A CLOSER LOOK AT THE INTERMEDIATE FUNCTION

The intermediate partition function is also of interest in partition
theory. In order to determine the value of p(k, n), we first note that we
can break the partitions counted by p(k,n) into two distinct, mutually
exclusive groups:

1. Partitions where the smallest summand is k
2. Partitions where the smallest summand is greater than k
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Looking first at the partitions where the smallest summand is k,
we have that p(k,n — k) gives the correct number of partitions. This
follows because we can form a partition of n — k with smallest addend
k and then add % to each part in the partition to obtain a sequence
summing to n.

Then, looking at the second condition, we obtain that the number of
partitions meeting the condition number p(k + 1,n) since this means
the least addend will be at least £ + 1 which is strictly greater than .

Because we had that the two groups of partitions were mutually
exclusive, the number of partitions satisfying either condition and thus
equal to p(k,n) is p(k + 1,n) + p(k,n — k). After handling the base
cases of p(k,n) = 0 for k > n and p(k,n) = 1 for k = n, we get a
recursively defined value for p(k,n) [4].

4. FERRERS DIAGRAMS

Definition 4.1. A Ferrers diagram (or Ferrers graph), after Norman
Macleod Ferrers, is a tool that can be used to make working with
partitions casier [4]. As described by Herbert S. Wilf:

T”he Ferrers diagram of an integer partition gives us a
very useful tool for visualizing partitions, and sometimes
for proving identities. It is constructed by stacking left-
justified rows of cells, where the number of cells in each
row corresponds to the size of a part. The first row cor-
responds to the largest part, the second row corresponds
to the second largest part, and so on” [6].

An example of a Ferrers diagram for a partition of 9 is given below:

The graph above corresponds to the partition 5+3+1. Note that Fer-
rers diagrams are drawn using dots. If blocks are used, the diagrams
are known as Young diagrams or Young graphs.
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Definition 4.2. If we take all columns and make them rows while
making all rows columns, we obtain another partition of 9:

This operation is known as the conjugate diagram of the Ferrers graph
for 5+3+1 [7]. This is sometimes called the dual partition (8]. If the
graph is visualized as a matrix, taking the transpose of the matrix is
analogous to taking the conjugate of the graph.

Definition 4.3. A graph whose conjugate graph is identical to the
graph itself is said to be self-conjugate [9]. An example of a self-
conjugate graph is shown below:

Ferrers Diagrams will allow us to prove some trivial facts about par-
titions which would otherwise be difficult to prove.

Theorem 4.4. The number of partitions of k into j parts is equal to
the number of partitions of k such that the largest part has size j (6]
(7).

Proof.

Because we can take any partition of £ with j parts and draw a Ferrers
diagram and then find the conjugate diagram (and vice-versa), we can
establish a bijection between the two sets. Thus, they must have the
same number of elements {6] {7].

Theorem 4.5. The number of paertitions of k such that no two parts
have the same size is equal to the number of partitions of k such that
no size is skipped from 1 to some mazimum size j [7].

Proof.

" A partition with no two parts of the same size has a Ferrers diagram
where each row is of a different size. A partition with no size skipped
(starting from size one) has a Ferrers diagram where each column is of
a different size” [7]. We can form a bijection between the tow types of
graphs using conjugate graphs [7].
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Theorem 4.8. The number of partitions containing only odd parts is
equal to the number of partitions with distinct parts for all positive
integers [9)].

Proof:
Note that each column with an odd number of elements can be ” folded”
to obtain a self-conjugate graph as shown below [4]:

[

A bijection can then be obtained between the two types of partitions
as shown below [4]:

e
L 2
o — L

Thus, the two types of partitions have the same number of elements.

5. RAMANUJAN CONGRUENCES

In 1919, Ramanujan discovered several properties of the partition
function in modulo and made a famous conjecture about a generalized
congruence relation [1].

Conjecture 5.1. (Ramanujan) For ¢ = 5,7, or 11, if 24+n = 1{mod ¢*),
then p(n) = 0(mod ¢*) for all £ > 0 [1].

This conjecture was later shown to be false when £ = 3, n = 243
and g = 7 because
24 ¥ n = 24 x 243 = 5832 = 1(mod 7%)

but

p(243) = 1339978259344888 = 245 # 0(mod 7°)
so the conjecture fails. But, Ramanujan proved several congruence
relations in specific moduli [1):
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Theorem 5.2. (Ramanujan) For any integer k, p(5%k+4) = 0(mod 5)
(1) 3)
Example 5.3.

p(5* 7+ 4) = p(39) = 31185 = 0(mod 5)

Theorem 5.4. (Ramanujan) For any integer k, p(7xk+5) = 0(mod 7)
(1) 3]
Example 5.5.
p(7 %5+ 5) = p(40) = 37338 = O(mod 7)

Theorem 5.6. (Ramanujan) For any integer k, p(11xk+6) = 0(mod 11)
(1] [3)
Example 5.7.

p(11 % 5 + 6) = p(66) = 2323520 = O(mod 11)

Before talking about the proofs of these congruences, we need to
define the rank of a partition.

Definition 5.8. The rank of a partition is given as the largest term
minus the number of terms in the partition [10]

The proofs of the partition congruences for 5 and 7 can be given
using the rank of a partition. The first attempts to use the rank to
prove Ramanujan’s congruences were made by Freeman Dyson.

"To group the partitions of 4, mathematicians divide the
rank by 5, and the remainder is the grouping number.
They use modular, or clock, arithmetic, to replace each
negative number with the positive number with which it
would share a position on the face of a clock having, in
this case, five numbers. So, before being divided by 5,
the rank 1 is replaced by 4 and the rank 3 is replaced by
2.

After looking at many examples, Dyson made a conjec-
tureproved in the 1950s by Atkin and Peter Swinnerton-
Dyer of Cambridgethat in Ramanujan’s congruences for
5 and 7, the rank divides the partitions into five and
seven equal-size groups, respectively. In other words, the
grouping created by the rank explains concretely why the
partition numbers are divisible by 5 or 77 [10].

The proof for Ramanujan’s congruence modulo 11 came using an-

other measure of a partition used by graduate student Karl Mahlburg
at The University of Wisconsin [10].
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It’s worthwhile to note that while it might seem like a safe guess that
for any integer k

p(13 x k + 7) = 0(mod 13)

would be true by following the pattern formed by Ramanujan’s theo-
rems, this fact does not hold [10].

Because the pattern breaks down, it was supposed for decades that
Ramanujan’s three partition congruences were the only congruences
for prime moduli, but in 1968 another was discovered by A. Oliver L.
Atkin. This, however, is much more complicated than Ramanujan’s
congruences as given in the next theorem [10].

Theorem 5.9. (Atkin) For any integer k, p(17303%k+237) = 0(mod 13)
[10]

Because congruences exist for 5,7,11, and 13, it is natural to wonder
if partition congruences exist for more primes. Ken Ono, after having
read some of Ramanujan’s work proved that partition congruences exist
for all primes greater than or equal to 5.

Theorem 5.10. (Ono) For p a prime such that p > 5, a partition
congruence exists modulo p.

Since Ramanujan discovered his congruences, there have also been
some similar congruences established for prime powers. An example is
given in the following theorem:

Theorem 5.11. (Ramanujan) For any integer k, p(25 x k + 24) =
0(mod 5%) [1]

Example 5.12.
p(25 * 2 + 24) = p(74) = 7089500 = 0(mod 5?)

6. ARBITRARY MODULI

Though partition theory has been studied in some capacity since
Euler, there is still relatively little known about partitions and the
partition function. Some open questions in the field today concern
p(n) reduced by some arbitrary moduli. The following are a few open
conjectures about p(n) by Paul Erdos and Morris Newman [3].

Conjecture 6.1. (M. Newman) If M is a positive integer, then in
every residue class r {mod M) there are infinitely many integers N for
which [3]

p(N) = r(mod M)
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Conjecture 6.2. (P. Erdos) If M is prime, then there is at least one
non-negative integer Ny, for which [3]
p(Ny) = 0(mod M)
As noted, these are unproven conjectures and are among the unan-
swered questions in partition theory.
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