
Math 573 Problem Set 7

1. (a) Show that the curve E41 is actually an elliptic curve.

It is clear that y2 = x3 − 412x is of the appropriate form, so it only remains
to show this curve is nonsingular. Let f(x, y) = y2 − x3 + 412x. We must
show there are no points on the curve where both partial derivatives vanish.
We have

∂f

∂y
= 2y

∂f

∂x
= 3x2 − 412.

Thus, the only possible singular points are (±
√

41/3, 0). However, it is easy
to check that these points do not actually lie on our curve by plugging them
into the equation. Thus the curve is nonsingular and so is an elliptic curve.

(b) Show that P = (41, 0) is a torsion point of order 2 on E41.

Using SAGE we compute that P ⊕P = (0 : 1 : 0) = 0E41 . Alternatively, you
could show this using geometry as in class and observing that the tangent
line here is vertical so gives a torsion point of order 2.

(c) Show that Q = (841, 24360) is on E41. Compute P ⊕ Q by hand. (Of
course check you are correct by using SAGE!)

To check that the point is on the curve you just make sure that 243602 =
8413−412(841), which it does. You should use the equations derived in class
to compute P ⊕Q. It just boils down to plugging in numbers. The answer
is

(
18081
400 ,−1023729

8000

)
.

2. (a) Let A and B be sets and let f : A → B be a function. Prove that if
there exists a function g : B → A so that f ◦ g = idB and g ◦ f = idA, then
f is a bijection.

Proof: Let x, y ∈ A with f(x) = f(y). Applying g to both sides we obtain
x = y and so f is injective. Let b ∈ B. We have f(g(b)) = b and so g(b)
maps to b under f and thus f is surjective. Hence, f is a bijection. �
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(b) Define sets A and B by

A =
{

(X, Y, Z) ∈ Q3 :
1
2
XY = N,X2 + Y 2 = Z2

}
B =

{
(x, y) ∈ Q2 : y2 = x3 −N2x, y 6= 0

}
.

Prove that there is a bijection between A and B given by maps

f(X, Y, Z) =
(
− NY

X + Z
,

2N2

X + Z

)
and

g(x, y) =
(

N2 − x2

y
,−2xN

y
,
N2 + x2

y

)
.

Proof: One must just check that f(g(x, y)) = (x, y) and g(f(X, Y, Z)) =
(X, Y, Z). Both of these are basic calculations using the properties of the
sets A and B.

(c) Let r be the rank of the elliptic curve EN . Prove that if r > 0 then N
must be a congruent number.

Proof: Assume the rank of EN > 0. Recall that this means there is a point
P ∈ EN (Q) with P /∈ EN (Q)tors. We can use the bijection from part (b)
as long as the y-coordinate of P is not 0. Suppose the y-coordinate is 0.
Then we have 0 = x(x2 − N2), i.e., x = 0 or x = ±N . But this implies
P ∈ EN (Q)tors, a contradiction. �

3. (a) Show that the point (−16, 120) lies on the curve E34

Again, this just amounts to plugging in the value x = −16 and y = 120 into
the equation for E34 and verifying it is satisfied.

(b) What triangle does the point (−16, 120) correspond to? What is the
area of the triangle?

Using the previous problem we see this point corresponds to the triangle
with area 34 and sides 15

2 , 136
15 , 353

20 .

(c) Show that the point (−2, 48) lies on the curve E34. What triangle does
this point correspond to? What is the area of this triangle?
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To see the point is on the curve one proceeds as above. This point corre-
sponds to the triangle 24, 17

6 , 145
6 with area 34.

(d) Is 34 a congruent number? Why or why not?

The number 34 is a congruent number because in part (b) we have a triangle
with rational sides and area 34.

4. (a) Let (G,⊕) be an abelian group and let n be an integer. Prove that
the set G[n] = {g ∈ G : nG = 0G} is a subgroup of G. (Recall, you only
need to check this set is nonempty, closed under addition and contains in-
verses to conclude it is a subgroup!) Conclude that the set EN (Q)[n] is a
subgroup of EN (Q) for any integer n.

Proof: We begin by observing that 0G ∈ G[n] since n0G = 0G by definition
of 0G. Let x, y ∈ G[n]. Then we have n(x⊕ y) = (x⊕ y)⊕ · · · ⊕ (x⊕ y) =
nx ⊕ ny = 0G. Thus, x ⊕ y ∈ G[n]. Note we needed G abelian here to
be able to move the x and y around to group them together. If x ∈ G[n],
then −x ∈ G[n] since x ⊕ (−x) = 0G and so nx ⊕ n(−x) = n0G, i.e.,
0G ⊕ n(−x) = 0G. The statement about EN (Q)[n] follows from what we
just proved along with the definition of EN (Q)[n]. �

(b) Let P be a rational point on the elliptic curve EN with P /∈ {0EN
, (0, 0), (±N, 0)}.

Prove that the set 〈P 〉 = {nP : n ∈ Z} is a subgroup of En(Q). Prove that
〈P 〉 ∼= Z. (Recall, this means you must define a map from 〈P 〉 to Z that is
a group homomorphism and is bijective.)

Proof: Recall that we defined 〈P 〉 = {nP : n ∈ Z}. Define a map φ from
〈P 〉 to Z by nP 7→ n. This is clearly a surjective map. It is injective precisely
because P is not a torsion point and so if nP = mP , then (n −m)P = 0G

which implies n = m (P not torsion). To see the map is a homomorphism,
observe that φ(0GP ) = 0 and φ(mP ⊕ nP ) = φ((m + n)P ) = m + n =
φ(nP ) + φ(mP ). �

5. Prove that the reduction of the elliptic curve EN modulo p is a nonsin-
gular curve if and only if p - 2N .

Proof: First, recall we are studying whether the equations 2y = 0 and
3x2 −N2 = 0 have simultaneous solutions when reduced modulo p.
Suppose that p | 2N . Then either p = 2 or p | N . If p = 2, then 2y = 0
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always and so the point (0, 0) is a singular point. If p | N , then the equations
become 2y = 0 and 3x2 = 0 and again the point (0, 0) is a singular point.
Thus, if p | 2N then reduction of EN is a singular curve.
Suppose now that the reduction of the elliptic curve modulo p is a singu-
lar curve modulo p and let (x, y) be a singular point. We must show that
p | 2N . If p - 2N then we must have y = 0 for 2y = 0, i.e., p - y. Thus,
x3 − N2x ≡ 0(mod p), i.e., p | x or p | (x2 − N2. Since we have a sin-
gular point, we also have that 3x2 − N2 ≡ 0(mod p). If p | x, then we
obtain that N2 ≡ 0(mod p), i.e., p | N . If p | (x2 − N2), then we obtain
3N2 − N2 ≡ 0(mod p), i.e., p | 2N . Thus if the reduction is singular, then
p | 2N . �

6. Suppose that for all but finitely many primes p with p ≡ 3(mod 4) we
have that p ≡ −1(modn) for n an odd number with 3 - n. Show how this
contradicts Dirichlet’s theorem on primes in arithmetic progression.

7. Consider the elliptic curve E53.
(a) Compute aE53,p for the first 15 primes. You can use SAGE to do this,
but be sure you know how to do it by hand if asked.

The values listed in the form (p, aE53,p) are: (2, 0), (3, 0), (5, 2), (7, 0), (11, 0), (13, 6), (17, 2), (19, 0),
(23, 0), (29,−10), (31, 0), (37,−2), (41,−10), (43, 0), (47, 0).

(b) Prove that we must have aEN ,1 = 1 for any N .

Proof: Recall that when defining aEN ,n for n not a prime, we specified that
aEN ,mn = aEN ,maEN ,n if gcd(m,n) = 1. Given a prime p with aEN ,p 6= 0,
we have aEN ,p = aEN ,1·p = aEN ,1aEN ,p. Thus, we have aEN ,1 = 1 for this
equation to hold. �

(c) Use the values computed in part (a) to obtain values for aE53,n for
1 ≤ n ≤ 20. Use this to obtain an approximation for L(E53, 1).

The nonzero values we get are (listed as above): (1, 1), (5, 2), (9,−3), (13, 6), (17, 2).
Thus, our approximation is

L(E53, 1) ≈ 1 +
2
5

+
−3
9

+
6
13

+
2
17

≈ 1.6458.



5

(d) Use SAGE to obtain the value of L(EN , 1). (Note that SAGE is really
just giving you a much better approximation!)

The value SAGE gives is 0.00000000000000.

(e) Is 53 a congruent number? Be sure to justify your answer.

The number 53 is a congruent number because L(E53, 1) = 0, so if we believe
the Birch and Swinnerton-Dyer conjecture (which we do) we can conclude
that 53 is a congruent number.

8. (a) Use SAGE to calculate the rank of the elliptic curve E41.

SAGE gives the rank as 2.

(b) Is 41 a congruent number?

Yes, 41 is a congruent number because the rank of E41 > 0.

(c) Use SAGE to compute 2 points P and Q on E41(Q) so that P /∈ 〈Q〉.
You do not have to prove this fact! (It may be helpful to note that under
the command E.point search(n), the points you are looking for are referred
to as generators. These are the ones that correspond to the copies of “Z”
that arise in EN (Q) when we write EN (Q) ∼= EN (Q)tors ⊕ Zr. )
Using the point search command we have that the first generator is (−9, 120)
and the second generator is (841, 24360).


