
Math 573 Problem Set 6

1. Consider the projection from the unit sphere S2\{(0, 0, 1)} to the xy-
plane discussed in class.

(a) Establish that the projection is a bijection between S2\{(0, 0, 1)} and
the xy-plane by explicitly writing down the formulas that give the projection
and it’s inverse and checking they are inverse maps.

One needs to derive the formulas. To do this one uses parametric equations.
For instance, to find where the point (x0, y0, z0) ∈ S2\{(0, 0, 1)} maps one
uses that the line connecting (0, 0, 1) and (x0, y0, z0) is given by x = x0t, y =
y0t, z = (z0 − 1)t. The projected point is when z = 0, and so it is given by
(x, y) =

(
x0

1−z0
, y0

1−z0

)
. Thus, the equation for the projection is

f(x0, y0, z0) =
(

x0

1− z0
,

y0

1− z0

)
.

The same type of argument with a line between (x0, y0) and (0, 0, 1) gives
the inverse map

g(x0, y0) =
(

2x0

1 + x2
0 + y2

0

,
2y0

1 + x2
0 + y2

0

,
−1 + x2

0 + y2
0

1 + x2
0 + y2

0

)
.

It is not just a matter of checking that g ◦ f(x0, y0, z0) = (x0, y0, z0), which
is an easy (if messy) calculation.

(b) Given a line `1 in the plane, determine the equation under mapping to
the sphere. Show that the limit as x goes to ±∞ in the xy-plane maps to
the north pole on the unit sphere for the line.

A line in the plane is given by the set of points {(x,mx + b)} for some fixed
m, b ∈ R. These points map to the set{(

2x

1 + x2 + (mx + b)2
,

2(mx + b)
1 + x2 + (mx + b)2

,
−1 + x2 + (mx + b)2

1 + x2 + (mx + b)2
: x ∈ R

)}
.

Now we want to see what happens to these points as x → ±∞.. It is clear
that the x and y coordinates go to zero as the bottom term is a polynomial
of degree 2 and the top has degree 1. The z-coordinate goes to 1 as the nu-
merator and denominator are each polynomials of degree two with leading



2

coefficient (m2 + 1).

(c) Let `1 and `2 be two parallel lines in the xy-plane. Conclude that two
parallel lines intersect when mapped to the unit sphere.

When considered on the unit sphere, they both must pass through (0, 0, 1)
as was shown in part (b), thus they intersect.

2. Let p and q be odd primes. Is it possible that a is a quadratic nonresidue
modulo p and q but there is a solution to the equation x2 ≡ a(mod pq)? If
so, find an example. If not, prove it can never happen.

Proof: What this problem is asking is to determine if there exists y so
that y2 ≡ a(mod pq) if we know that there are no solutions to the equations
x2 ≡ a(mod p) and x2 ≡ a(mod q). Suppose there is such a y. Then we
have that pq | (y2 − a). In particular, p | (y2 − a) and so y2 ≡ a(mod p).
But we already know that a is not a quadratic residue modulo p, so this is
a contradiction. �

3. Prove that 2 is not a primitive root of any prime of the form p = 3 ·2n +1
unless p = 13. (Hint: Think quadratic residues here!)

Proof: Recall that if 2 is a quadratic residue modulo p then 2 cannot be a
primitive root. Thus, we show that

(
2
p

)
= 1 for primes p of the form 3·2n+1

unless p = 13, i.e., unless n = 2. Recall that
(

2
p

)
= 1 if p ≡ ±1(mod 8). If

n = 1, then p = 7 ≡ −1(mod 8), so in this case
(

2
p

)
= 1. If n ≥ 3, then

p ≡ 1(mod 8) so that
(

2
p

)
= 1 as well. For p = 13, we have p ≡ 5(mod 8)

and so
(

2
13

)
= −1. �

4. Prove that the quadratic residues modulo p (p = odd prime) are congru-
ent to 12, 22, 32, . . . , ((p − 1)/2)2. Prove that is p > 3 then the sum of the
quadratic residues is divisible by p.

Proof: Recall that there are precisely (p−1)/2 quadratic residues and that
12, 22, . . . , ((p−1)/2)2 are all quadratic residues. Thus, to show these are all
the quadratic residues modulo p we need to show that these are all distinct
elements. Suppose i2 ≡ j2(mod p). This implies that p | (i2−j2) = (i−j)(i+
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j), i.e., p | (i− j) or p | (i + j). However, we know that 1 ≤ i, j ≤ (p− 1)/2,
so in particular we have that if p | (i± j), then i = j. Thus, these elements
are all distinct and so are all the quadratic residues modulo p.
The sum of all the quadratic residues is given by

12 + 22 + · · ·+ ((p− 1)/2)2 =
(p−1)/2∑

k=1

k2

=

(
p−1
2

) (
p−1
2 + 1

) (
2p−1

2 + 1
)

6

= p

(
p−1
2

) (
p−1
2 + 1

)
6

.

Thus, it is clear that p divides this as the 6 cannot cancel the p (we assumed
p > 3 here!) �

5. Prove that
(

6
p

)
= 1 if and only if p ≡ 1, 5, 19, 23(mod 24).

Proof: One uses the criterion we proved for
(

2
p

)
and

(
3
p

)
and then the

Chinese remainder theorem. �

6. Compute
(

3658
12703

)
by hand.

Note that 12703 is prime and 3658 = 2·31·59. Thus,
(

3658
12703

)
=

(
2

12703

) (
31

12703

) (
59

12703

)
.

Since 12703 ≡ −1(mod 8), we know that
(

2
12703

)
= 1. We use quadratic reci-

procity to calculate the other two. quadratic reciprocity gives(
31

12703

) (
12703

31

)
= (−1)((12703−1)/2)·((31−1)/2) = −1(

59
12703

) (
12703

59

)
= (−1)((59−1)/2)·((12703−1)/2) = −1.

Thus, we need to calculate
(

12703
31

)
=

(
24
31

)
and

(
12703

59

)
=

(
18
59

)
. We show the

first and omit the second.(
24
31

)
=

(
4
31

) (
2
31

) (
3
31

)
=

(
2
31

) (
3
31

)
.
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Since 31 ≡ −1(mod 8), we have
(

2
31

)
= 1. We use quadratic reciprocity

again to calculate
(

3
31

)
. This gives(

3
31

) (
31
3

)
= −1

and 31 ≡ 1(mod 3) and so
(

31
3

)
=

(
1
3

)
= 1. Thus,

(
3
31

)
= −1. Using this

and the calculation omitted one obtains
(

3658
12703

)
= 1.

7. Let p be an odd prime. Show that the equation

x2 + py + a = 0

with gcd(a, p) = 1 has an integral solution if and only if
(
−a
p

)
= 1.

Proof: Suppose that the equation x2 + py + a = 0 has an integral solution.
Reducing this equation modulo p gives x2 ≡ −a(mod p), and so

(
−a
p

)
= 1.

Now suppose
(
−a
p

)
= 1. This implies there exists z ∈ Z so that z2 ≡

−a(mod p), i.e., there exists t ∈ Z so that z2 + a = pt. Thus, the equation
has an integer solution, namely x = z and y = −t. �

8. Determine all singular points of the curve f(x, y) = 0 where f(x, y) =
y(x3 − 3x).

Recall a point (x0, y0) on the curve f(x, y) = 0 is a singular point if ∂f
∂y (x0, y0) =

∂f
∂x (x0, y0) = 0. We have

∂f

∂y
= x(x2 − 3) = 0

if and only if x = 0 or x = ±
√

3 and

∂f

∂x
= 3y(x2 − 1) = 0

if and only if y = 0 or x = ±1. Clearly if x = ±1, then ∂f
∂y 6= 0, so we must

have y = 0 from the second equation. Thus, the possible singular points
are (0, 0), (±

√
3, 0). It is clear these points are all on the curve, so we have

these three singular points.
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9. Let P = (x0, y0) be a point on the elliptic curve EN . Derive a formula
for P ⊕ P in terms of x0 and y0.

This proceeds essentially as before, only now we take a tangent line instead
of a line between two distinct points P and Q. Let y = m(x − x0) + y0 be
the tangent line to the elliptic curve EN at the point P . We saw before that
this intersects the elliptic curve at another point R = (x1, y1). As in class,
if we set f(x) = x3 − N2x − (m(x − x0) + y0)2, then the sum of the roots
is equal to the negative of x2 coefficient, i.e, equal to m2. The sum of the
roots this time is x0 +x0 +x1. Thus, we have x1 = −2x0 +m2. To calculate
m we implicitly differentiate the equation for the elliptic curve and solve for
dy
dx to obtain

m =
3x2

0 −N2

2y0
.

We can plug this value for x1 back into the equation of the line to get the
value of y1, i.e., y1 = m(x1 − x0) + y0. We know that the x-coordinate of
2P is exactly x1 and the y-coordinate is −y1. Thus, we have equations to
calculate 2P . (These will be needed in the next homework assignment!!!) �

10. (a) Let X, Y, Z ∈ Q be such that X2 + Y 2 = Z2, i.e., (X, Y, Z) is a
Pythagorean triple. Prove that one obtains from this a Pythagorean triple
(x, y, z) ∈ Z3 so that gcd(x, y, z) = 1.

Proof: Let X = a
b and Y = c

d in lowest terms. We begin by observing
that we can assume gcd(a, c) = 1 for if not, we can divide X, Y , and Z
by gcd(a, c). Let x = lcm(b, d)X = ad

gcd(b,d) , y = lcm(b, d)Y = cb
gcd(b,d) ,

and z = lcm(b, d)Z. Let p be a prime so that p | x and p | y. Since
gcd(b, d) | b and gcd(a, b) = 1 (since the fraction is in lowest terms) we have
gcd(a, gcd(b, d)) = 1. Thus, we have p | a or p | d

gcd(b,d) . If p | a, then

we know that p - c since gcd(a, c) = 1, so p | d
gcd(b,d) . However, this is a

contradiction as gcd
(

b
gcd(b,d) ,

d
gcd(b,d)

)
= 1. Now suppose p | d

gcd(b,d) . Then
necessarily we have p | c arguing as above. But this contradicts the fact that
gcd(c, d) = 1. Thus, it must be that no prime divides x and y so they are
relatively prime. �

(b) Prove that if (x, y, z) ∈ Z3 is a Pythagorean triple with gcd(x, y, z) = 1,
then z must be odd.
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Proof: We showed in class that if (x, y, z) is a Pythagorean triple with
gcd(x, y, z) = 1, then either x is even or y is even, but not both. (If they
both were, 2 would divide z as well and we wouldn’t have a gcd of 1!) As-
sume without loss of generality that x is even. Then z2 is congruent to 1
modulo 4, so must be odd. �

(c) Prove that if 1 is a congruent number then the equation u4 − v4 = w2

would have an integer solution with w odd.

Proof: Suppose that 1 is a congruent number and let (X, Y, Z) be a Pythagorean
triple having area 1 as in part (a). It is clear that there cannot be an integer
sided triangle with area 1. (Just check the cases!) As in class, using N = 1
here, we obtain the equation(

X2 − Y 2

4

)2

=
(

Z

2

)4

− 1.

Multiplying through by 16 we obtain

(X2 − Y 2)2 = (Z)4 − 24.

This gives the solution w = X2 − Y 2, v = 2, and u = Z to the equation.
This is not an integer solution though. We must clear denominators. Again
we multiply by bd

gcd(b,d) (keeping the same notation as part(a)). Thus, defin-
ing x, y, and z as above we have the integer solution w = x2 − y2, u = z,
and v = 2bd

gcd(b,d) . Since x is even and y is odd, x2 − y2 is necessarily odd, as
desired. �

(d) Prove that if there is no nontrivial integer solution to the equation in part
(c), then there is no nontrivial integer solution to the equation a4 + b4 = c4,
Fermat’s last theorem for exponent 4. (This should convince you it is hard
to show 1 is not a congruent number. In fact 1 is not a congruent number,
but showing that the equation in part (c) does not have a solution requires
proof by descent, which would require some more work. A paper about Fer-
mat’s theory of proof by descent may be a good idea though!)

Proof: Suppose there is a nontrivial triple (a, b, c) with a4 + b4 = c4, i.e.,
c4 − a4 = b4. Setting u = c, a = v and b2 = w gives an integer solution to
u4 − v4 = w2. Thus, if there are no solutions to the equation u4 − v4 = w2

then there can be no nontrivial integer solution to Fermat’s equation of ex-
ponent 4. �


